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Abstract—This paper deals with the diffraction and the pressure-
dependent-radiation problems for an array of hydro dynamically 
interacting OWC’s devices consisting of concentric vertical 
cylinders that are restrained in finite depth waters and exposed 
to the action of regular surface waves. Such type of devices have 
been reported in connection with the wave energy extraction 
using the oscillating water column principle or in composing 
semi–submersible platforms for renewable electricity generation 
from the combined wind and wave action. Numerical and 
experimental results are presented concerning an array that 
consists of three OWC’s devices made up of concentric vertical 
cylinders. Wave forces, air volume flow rate, inner pressure and 
absorbed wave power are parametrically evaluated coupled with 
the distance among the devices. The numerical results have been 
obtained using single body hydrodynamic characteristics in 
conjunction with the physical idea of multiple scattering to 
account for the interaction effects among the devices. 

 
Keywords— Oscillating water column; Wave energy; Concentric 
cylinders array; Air pressure oscillation; Capture width. 

I. INTRODUCTION 

The problem of the hydrodynamic interaction among 
neighbouring oscillating water column (OWC) devices is of a 
particular importance in evaluating the absorbed wave energy 
by a device since the hydrodynamic interaction phenomena 
between each member of a multi-body configuration lead in 
different value of the one obtained from an isolated device. 
Each device of the configuration scatters waves towards the 
others, which in turn scatter waves contributing to the 
excitation of the initial device and so on. In the present 
contribution, the total wave field around each body of the 
multi – body configuration is obtained by superposing the 
incident wave potential and various orders of successively 
reflected waves emanating from all the devices of the 
arrangement using the method of multiple scattering. The 
physical idea of multiple scattering was introduced by 
Twersky [1] in studying the acoustic scattering by an array of 
parallel cylinders and was applied to free-surface body - wave 
interaction problems by Ohkusu [2] for the case of three 
adjacent, floating, vertical truncated cylinders. The method is 

then extended by Mavrakos and Koumoutsakos [3] and 
Mavrakos [4] for the solution of the diffraction and radiation 
problems by an array of arbitrarily shaped vertical 
axisymmetric bodies with any geometrical arrangement and 
individual bodies’ geometries. 

Recently, some theoretical studies on arrays of OWC 
devices have been made to examine the amount of absorbed 
wave energy [5] - [9]. All these OWC devices arrays consists 
of a vertical cylinder partly submerged as an open - bottom 
chamber in which air is trapped above the inner water surface.  

The present contribution deals with arrays of concentric 
OWC devices exposed to the action of monochromatic wave 
trains. The geometric configuration of the single body consists 
of an exterior partially immersed cylindrical structure of finite 
volume supplemented by an interior piston-like, free surface 
piercing truncated cylinder (Fig. 1). In this way, an internal 
free surface is formed that is enclosed between the cylinders, 
and pushes the dry air above through a Wells turbine system to 
generate power. 

 
Fig. 1. Schematic representation of an array of concentric OWC devices 

The fundamental hydrodynamic properties of isolated 
truncated hollow cylinders have been investigated some time 
ago ([10] - [13]) using matched axisymmetric eigenfunction 
expansions. Mavrakos [14] extended the formulation to the 
linear hydrodynamics of independently moving concentric 
cylinders while Mavrakos and Chatjigeorgiou [15] and 
Chatjigeorgiou and Mavrakos [16] investigated the 
corresponding second-order diffraction problem around this 
type of structures and treated the second-order radiation 
problem in the case of heaving motions of the internal cylinder. 
Isolated OWC devices consisting of concentric cylinders were 
presented by Mavrakos and Konispoliatis [17] who tested how 
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differentiations in the device’s geometry (wall thickness, 
draught, shape of the chamber, turbine characterises) affect the 
inner pressure and as a result the absorbed power by the 
device. 

The present work aims at developing a semi–analytical 
method to solve the linearized diffraction and pressure 
radiation problems of an array that consists of N number of 
OWC’s devices and to evaluate the air volume flow rate, the 
inner pressure and the absorbed wave power in dependence of 
the distance among the devices. The numerical results for 
three same OWC devices placed in a row are supplemented by 
corresponding experimental ones that are dealing with the 
linearized diffraction problem (first-order exciting wave forces) 
of restrained multiple concentric cylinders arrangements that 
are open to the atmosphere (Fig. 2). They have been obtained 
during an experimental campaign conducted in CECHIPAR 

 

 
Fig.2. Physical model of a concentric cylinder arrangement in an array of 
three identical bodies 

research institution [18], Spain, in the framework of the 
European program HYDRALAB III Transnational Access 
Activities program that supported large European research 
infrastructures. 

II. FORMULATION OF THE PROBLEM 

A stationary group of N rigid vertical axisymmetric 
oscillating water column devices is considered excited by a 
plane periodic wave of amplitude H/2, frequency ω and wave 
number k propagating in water of finite water depth d. The 
outer and inner radii of the external cylindrical body in each 
device q, q=1, 2,…, N, are , respectively, and the 

distance between the bottom and sea bed is denoted by , 

whereas the radius of the inner cylindrical body in each device 
q, q=1,2,…, N, is and the distance between its bottom and 

the sea bed is denoted by h  (Fig. 3). We assume small 

amplitude, inviscid, incompressible and irrotational flow. A 
global Cartesian co–ordinate system O–XYZ with origin on 
the sea bed and its vertical axis OZ directed positive upwards 
is used. Moreover, N local cylindrical co-ordinate 
systems

qq ba ,

1q

2qh

qc

 qqq zr ,, , q = 1, 2,…, N are defined with origins on 

the sea bottom and their vertical axes pointing upwards and 
coinciding with the vertical axis of symmetry of the q device 
(Fig. 3). 

For the p OWC device , p = 1, 2,…, N, we expect the 
internal free surface of the device to be subjected to an 

oscillating pressure head  withp
inP  tip

in
p

in epP  0Re , having 

the same frequency, ω, as the incident wave. 
The fluid flow around the q=1,2,…,N device can be 

described by the potential function: 
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Following [19] the spatial function  can be decomposed, 

on the basis of linear modelling, as: 
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Here, is the undisturbed incident harmonic wave velocity 

potential;  is the scattered potential around the q device, 

when it is considered fixed in waves with the duct open to the 
atmosphere, so that the pressure in the chamber is equal to the 

atmospheric one; is the radiation potential around the q-th 

body due to time harmonic oscillating pressure head in the 
chamber for the p device which is considered fixed in 
otherwise calm water.  
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Fig. 3. Definition sketch 

The potentials  (l ≡ q,  qp ; j=0, 7, P; p=1, 2,…, N) are 

solutions of Laplace's equation in the entire fluid domain and 
satisfy in the entire fluid domain the following boundary 
conditions: 
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at the outer and inner free sea surface  dz  , 
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on the mean device’s wetted surface  qS0

Here   n / denotes the derivative in the direction of the 

outward unit normal vector n , to the mean wetted surface 

on the q–th body. Finally, a radiation condition must be 

imposed which states that propagating disturbances must be 
outgoing.  

qS0

The velocity potential of the undisturbed incident wave 

system, , propagating at angle β, (Fig. 3), to the positive x–

axis can be expressed in the cylindrical co–ordinate frame of 
the q–th body as follows [3]: 
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Here J
m
 is the m-th order Bessel function of the first kind. 

The total diffraction and the pressure radiation potential due 
to the oscillating pressure head in the q-th device, respectively, 
expressed in the isolated q–th device’s cylindrical co–ordinate 
system  zr qq ,,  can be described by: 
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The unknown potential functions ,q
mD, ,

qq
P m , involved in 

equations (8), (9) can be established through the method of 
matched axisymmetric eigenfunction expansions. 

In doing so, the flow field around the device q is subdivided 
in coaxial ring–shaped fluid regions, categorized by the 
numerals I, III, M and IV (Fig. 3). In each of the above regions, 
different series expansions of the velocity potential can be 
made. These are solutions of the Laplace equation in each 
fluid region and are selected in such a way that the 
corresponding conditions at the horizontal boundaries of each 
fluid region and, in addition, the radiation condition at infinity 
in the outer fluid domain are satisfied. As a result, the velocity 
potentials in each fluid domain fulfil a priori the kinematical 
boundary conditions at the horizontal walls of the bottomless 
cylindrical duct, the linearized condition at the free surface, 
the kinematical one on the sea bed, and the radiation condition 
at infinity. 

Although the radiation potential qq
P , around the isolated 

body q involves only the m=0 term, [20], we prefer the series 
representations in form of equation (9) in order to obtain a 

similar representation with the one of the total potential, , 

induced around any body q of the configuration due to the 
inner pressure in body p. This potential, expressed in the q–th 
body's cylindrical coordinate system , includes 

components for all values of m accounting for interference 
effects. Thus, it can be written as: 
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The function ,
qq
P m

P

, from equation (9), has been evaluated in 

[17], and thus it will be no further elaborated here. Thus, the 
principal unknowns of the problem are the 

functions and . q
mD, qp

m,

Following the same procedure as for an array of vertical 
axisymmetric bodies restrained in waves [3] and as for 
multiple OWC devices consisted of open – bottom moonpool 
ducts [9], the total wave field in the outer fluid domain I of 
body q,  i.e. dzar qq  0, , can be obtained by substituting 

equations (8)–(10) into (2) with: 
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Whereas: 

 





0

,, )(
)(

)(
),(

j
j

pjm

pjmp
jPmp

p
mP zZ

aaK

raK
Fzr  (13) 

and 

  ,





1

,,
s

v
jm

sv
jm GG  PDFF

s

v
jm

sv
jm ,,

1
,, 





 qpqv ,  (14) 

Here is the s–th order scattering coefficients obtained 

through the solution of the respective order of diffraction 

problem –described by the velocity potential – in the co–

ordinate frame of body q;  is the s–th order scattered 

wave coefficients from the remaining (q ≠ p) open – duct 
devices obtained through the solution of pressure radiation 

problem – – in the co–ordinate frame of body q; and 
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represents the contribution of the s-th order incident wave 
potential to the total diffracted wave field around the body q 
(see eq. 8), originated from the (s-1) orders of scattered wave 
fields from the rest bodies (p = 1, 2, …, N; p ≠ q) of the array. 
Especially, for the first order of interaction, s=1, the 

undisturbed incident wave potential, , is given by equation 

(7). Moreover, for the pressure radiation problem, it holds: 
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Here are the m–th order modified Bessel function of 

first and second kind, respectively, and  are 

orthonormal functions in 
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Here k is related to ω through the dispersion equation: 
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The first term in equation (12) represents the isolated 
device wave field around the p body due to its own internal 
pressure variation, the second term denotes the incident wave 
fields on body q emanating from the scattered fields of the 
remaining devices considered open and the last term is the 
scattered wave filed around the q –th device. 
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whereas ; ;PD, qpqv , d1  for diffraction problem 

and 1 for pressure radiation problem, and 
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III. VOLUME FLOW 

During the water oscillation inside the chamber of q device 
q=1,2,…,N,  the dry air above the free surface is being pushed 
through a Wells turbine. The time dependent volume flow 
produced by the oscillating internal water surface is given by:  
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Here zu denotes the vertical velocity of the water surface, 

and the inner water surface of the q device. It proves 

convenient to decompose the total volume flow, , of the q 

device, into two terms associated with the diffraction, , and 

the pressure–dependent radiation problem, , as follows:  
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whereas and are the corresponding radiation 
conductance and susceptance, respectively. Assuming uniform 
pressure distribution inside the chamber, it can be shown that, 
even though all m-modes terms affect the values of the 
diffraction and radiation potentials, by substituting those 
potentials in equation (29) only the  modes contribute to 

and , as in an isolated device [21]. 
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The total volume flow in each body q of the configuration 
is proportional to the pressure of each of the remaining n, 
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IV. AIR PRESSURE CALCULATION 

Assuming that the Wells turbine is placed in each duct of 
the q devices, between the chamber and the outer atmosphere, 

and it is represented by a pneumatic admittance q , then the 
volume flow in q device is equal to: 
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The mass flow rate of air though the turbine can be written 

as [22]: 
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Here,  is the air volume in undisturbed conditions in device 

q, q=1,2,…,N , 

qV0

4.1 is the adiabatic constant and  is the 

atmospheric pressure. 
aP

According to [23] and [24], for the Wells turbine can be 
obtained: 
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Whereas K is constant for a given turbine geometry 
(independent of turbine size or rotational speed), D is turbine 
rotor diameter, N is the rotational speed (radians per unit time) 
and a is the atmospheric density.  

The imaginary part of Λq may be of some importance in a 
full-scale OWC device, but it is usually negligible in down-
scaled laboratory model experiments [25]. 

V. WAVE FORCES 

The various forces acting on the q oscillating water column 
device can be calculated from the pressure distribution given 
by the linearised Bernoulli’s equation:   

 tiq
q

qq ei
t

tzrP  



);,,(  (35) 

Whereas  is the q devices’ velocity potential in each fluid 

domain I, III, M and IV.  

q

The hydrodynamic forces and moments acting on the body 
q, q=1,2,…,N can be calculated by integration the pressure 

over the mean wetted surface using the relation: qS0
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In addition, the hydrodynamic reaction forces and moments 

 acting on the device q in the i–th direction due to 

pressure in the p device with inner pressure  and 

frequency ω, can be obtained: 
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p
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  (37)    

qS

q
i

tiqp
p

tiqp
i

qp
i dSneiefF

0

 

Whereas are the generalized normal components defined 

by: 

q
in

  qqqq nnnn 321 ,, ,  qqqqq nnnnr 654 ,,  (38) 

and is the position vector of a point on . qr qS0

Furthermore, the complex force may be written in the 

form: 
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Whereas are the added mass and dumping coefficients, 

respectively. 
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VI. ABSORBED POWER 

The averaged value of the power absorbed from the waves 
over one wave period from the device q is obtained from [25]: 
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 (40) 

The capture width of the q device is the ratio of the 
power absorbed by the device to the available power per unit 
crest length of the incident wave [26], i.e. 

q

   )2/(2 2
g

qq CHgW   (41) 

gC being the group velocity of the incident wave. 

The absorbed power (equation (40)) takes a maximum 
value of [27]: 
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corresponding to an optimum inner pressure head: 
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qq
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The resulting maximum capture width is then given by 
equation (41). 

VII. NUMERICAL RESULTS 

The calculation of the coefficients  

, j=D,P is the most significant part of 

the numerical procedure, because they affect the accuracy of 
solution. For the present calculations, in the I-th and the M-th 

ring element

III
qjm

I
ijm FF ,, , ,

IV
qjm

M
ijm

M
ijm

III
qjm FFFF ,

*
,,

*
, ,,,

30i terms were used, while for the III-th and 
IV-th ring element 40q . In addition, the presented results 

were obtained for five order interactions. 
Firstly, we examine an array of three same OWC devices 

placed in a row, for 56 qq ba  , 54 qq bc  and qbd 10  (for 

definitions see figure 3). The draughts of the outer and inner 
cylindrical body are  and qb 54 qb , respectively, and the 

distance among the devices (Fig. 4) is . The incident 

wave is propagating to the positive x–axis at θ=0ο angle, the 
origin of the Cartesian co–ordinate system is on the sea bed 
and its vertical axis directed positive upward coinciding with 
the vertical axis of the second device local coordinate system. 
In figure 5 the horizontal (acting on x axis) and vertical 
exciting forces on the outer and inner cylindrical body of each 
OWC device of the configuration is depicted. The numerical 
results were tested against the experimental ones obtained in 
CECHIPAR research institute experimental campaign. 

qb4

 
Fig. 4. Array of three identical OWC devices placed in a row 
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Fig. 5. Comparison of the horizontal and vertical exciting wave forces on outer and inner cylindrical body of each OWC device of the configuration. (a)-(b) 
correspond to the horizontal exciting wave force on outer cylindrical body of side and middle OWC devices respectively; (e)-(f) correspond to the horizontal 
exciting wave force on the inner cylindrical body of side and middle OWCs respectively; (c)-(d) correspond to the vertical exciting wave force on outer cylindrical 
body of side and middle OWCs respectively, and (g)-(h) correspond to the vertical one on inner cylindrical body of side and middle OWCs respectively.



Next, we examine how the distance among the devices in 
an array configuration affects the maximum capture width. In 

figure 6 the value of 



2
1

max Nv
N

q

q


  , N=3, is being 

plotted for the same as the above configuration, i.e. 
56 qq ba  , 54 qq bc  and draughts of the outer and inner 

cylindrical body  and qb 54 qb , respectively. The water depth 

is , while the distances among the devices 

are . It is reminded that 

qbd 20

qb 8,4 qb32qb ,  2/ is the 

maximum capture width by an isolated heaving device [25]. 
Next, we studied how each device’s draught affects the 

maximum capture width. In figure 7 the draught of each 
device varies while the distance among the devices is kept the 
same, i.e.   qqqqq bbbbhd 5,3,2,

2
 and   ,54

1 qq bhd   

524,5 qb14,59 qq bb (for definitions see figure 3). Here the 

value of  
2qq hdvb   is plotted for the same configuration 

as the above of OWC devices. The rest geometric 
characteristics for the single body are kept the same i.e. 

56 qq ba  , 54 qq bc  , , .  qbd 20 qb4

Finally, we examined how the inner cylindrical body’s 
radius affects the maximum capture width. In figure 8 the 
value of   qqq bvcb  is plotted for various inner cylindrical 

body’s radiuses in order to compare its values with those 
obtained from an array of OWC devices without central 
cylindrical body, i.e. moonpool OWC devices. The array of 
moonpool OWC devices were placed in a row with same 
wave propagation as the above. The geometric characteristics 
for the single moonpool body are 56 qq ba  , qbd 20 , 

 and for the single concentric one are: qq bh 19
2
 56 qq ba  , 

, , qbd 20 qq bh 19
2
 596

1 qq bh  while  ,54 qq bc   

5,52,53 qq bb qb . 
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Fig. 6. Value of 


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qv  versus for three OWC devices 

placed in a row for various distances among them. 
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VIII. CONCLUSIONS 

A semi-analytical method has been developed to solve the 
pressure radiation problem around an array of multiple 
interacting oscillating water column devices consisting of 
vertical concentric cylinders. The exciting wave forces acting 
on each body of a three device arrangement, placed in a row, 
were tested against measurments of an experimental campaign 
conducted in CECHIPAR research institute with good 
agreement. In addition, the effect of the distances among the 
devices of the array on the ratio, v, of the total average capture 
width per unit crest length of the incident wave was plotted. 
The value of v tends to the value of the isolated device – unity 
for all incident wavelengths – while the distance among the 
devices increases. Moreover, the effect of each devices 
draught on the maximum capture width was tested. From the 
depicted results the total average of the capture width is 
decreasing while the draught of each device increases. Finally, 
it was examined how inner cylindrical body’s radius affects 

ka



the maximum capture width. As the radius of the inner 
cylindrical body increases, by keeping the rest geometric 
characteristics of the device constant, the maximum capture 
width is decreasing, since the inner water surface is also 
decreasing. 
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