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ABSTRACT 

This paper deals with the diffraction, the pressure– and 
motion–dependent–radiation problems for an array of hydro–
dynamically interacting OWC’s devices consisting of 
concentric vertical cylinders that are floating in finite depth 
waters and exposed to the action of regular surface waves. The 
devices are either floating independently or as a unit assuming 
a platform. Such type of devices have been reported in 
connection with the wave energy extraction using the 
oscillating water column principle or in composing semi – 
submersible platforms for renewable electricity generation from 
the combined wind and wave action, see Fig.1, (Aubault et al., 
2011; Mavrakos et al., 2011). The wave action causes the 
captured water column to oscillate in the chamber, compressing 
and decompressing the air above the inner water surface. As a 
result, there is an air flow moving forwards and backwards 
through a turbine coupled to an electric generator.  

 

INTRODUCTION 
Recent research efforts (Nader et al., 2012; Konispoliatis & 
Mavrakos, 2013a, b) have been dealt with the evaluation of the 
hydrodynamic and power absorption characteristics of arrays of 
interacting OWC’s devices consisting of circular or concentric 
cylindrical champers. The devices were assumed restrained in 
regular waves. The diffraction– and the pressure induced 
radiation– problems have been analytically treated and relevant 
results presented. In the present contribution, the methodology 
is extended to include the motion–dependent radiation problem 
and to solve the pressure–motion equations of multiple floating 
OWC’s arrangements.    
 The problem of the hydrodynamic interaction among 
neighbouring floating devices is of a particular importance 
since the hydrodynamic characteristics of each member of a 
multi–body configuration may differ from the ones obtained 
from an isolated device due to interaction phenomena with 
neighbouring bodies. Each device of the array scatters waves 

which excite the remaining bodies which in turn respond to this 
excitation and scatter waves contributing to the excitation of 
the initial body and so on. Therefore it is clearly important to 
be able to estimate the interactions between the devices of the 
array in order to create a background theory in developing 
arrays of OWC devices. In that context, the physical idea of 
multiple scattering is being exploited in the fashion that was 
initially presented in Mavrakos & Koumoutsakos (1987) and 
Mavrakos (1991) work. 

 
Figure 1: Wind & wave action submersible platform, consisting 
of three OWC devices 

 In the present contribution, we consider a system of N 
OWC’s devices which can oscillate about their mean 
equilibrium position moving either independently or as a unit. 
The geometric configuration of each device consists of an 
exterior partially immersed toroidal oscillating chamber of 
finite volume supplemented by a concentric interior piston– 
like truncated cylinder, see Figs. 2, 3. In each device, the 
oscillating inner air pressure is a function of the motions of 
each member of the array. In the case of a rigid multi–OWC’s 
device configuration, the individual chambers’ pressures 
depend from the motion components of the entire structure. 
Therefore the absorbed power of each of the device of the 
multi–component structure are presented as a function of the 
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six modes of motion of the structure and compared with the 
ones obtained from the individual freely floating members.  

 
Figure 2: Floating OWC device consisting of a concentric 
vertical cylinder 

Moreover, the influence of the neighbouring bodies on the 
total wave field around each member of the OWC’s array along 
with their effect on the array’s power efficiency is examined. In 
exploiting the multiple scattering approach to evaluate the 
hydrodynamic interaction effects among the members of the 
multi – body configuration, the single isolated body 
hydrodynamic characteristics are required. Here the method of 
matched axisymmetric eigenfunction expansion as it was 
implemented either for truncated vertical cylinders or for 
arbitrarily shaped vertically axisymmetric compact bodies 
(Garret, 1971; Yeung, 1981; Mei, 1983; Kokkinowrachos et al., 
1986) has been used. According to this method, the flow field 
around the bodies is subdivided in coaxial ring–shaped fluid 
regions, categorized by the numerals I, III, M and IV (Fig. 3) in 
each of which appropriate series representations of velocity 
potential can be established. 

 Finally, the effect of moorings on the developed pressure 
head inside each device of the array is investigated thoroughly 
together with the motion dynamics of the floating arrangement. 

DESCRIPTION OF THE HYDRODYNAMIC PROBLEM 
We consider a group of N floating vertical axisymmetric 
oscillating water column devices that is excited by a plane 
periodic wave of amplitude H/2, frequency ω and wave number 
k propagating in water of finite water depth d. The outer and 
inner radii of each device’s chamber q, q=1, 2,…, N,  are 
denoted by  respectively, whereas the distance between 

the bottom of the q device and the sea bed is denoted by . 

The radius of the interior concentric cylindrical body in each 
device q, is denoted by  and the distance between its 

bottom and the sea bed is (Fig. 3).  It is assumed small 

amplitude, inviscid, incompressible and irrotational flow, so 
that linear potential theory can be employed. A global 
Cartiesian co–ordinate system O–XYZ with origin on the sea 
bed and its vertical axis OZ directed positive upwards is used. 

Moreover, N local cylindrical co-ordinate systems   , q 

= 1, 2,…, N are defined with origins on the sea bottom and 

their vertical axes pointing upwards and coinciding with the 
vertical axis of symmetry of the q device.   
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, ,q qr 

The fluid flow around the q=1,2,…,N device can be described 
by the potential function: 
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Following Falnes (2002) the spatial function  can be 
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Figure 3: Definition sketch of the q OWC device of the array 
 

Here, is the velocity potential of the undisturbed incident 

harmonic wave;  is the scattered potential around the q 

device, when it is considered fixed in waves with the duct open 
to the atmosphere, so that the pressure in the chamber is equal 

to the atmospheric one; is the motion–dependent radiation 

q
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q
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potential around the body q resulting from the forced 
oscillation of t e p–th body with unit velocity 

amplitude,

h

 tip
j

p
j exx  0Re  ; is the pressure–dependent 

radiation potential around the q–th body when it is considered 
fixed in the wave field and open to the atmosphere  due to unit 

time harmonic oscillating pressure head, 

qp
P

 tip
in

p
in epP  0Re , 

in the chamber of the p device which is considered fixed in 
otherwise calm water.  
The velocity potential of the undisturbed incident wave 

system, , propagating at angle β, (Fig. 3), in the positive x–

axis can be expressed in the cylindrical co–ordinate frame of 
the q–th body as follows [Mavrakos & Koumoutsakos, 1987]: 
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The symbols used above are defined in Figure 3. Here is the 

m–th order Bessel function of first kind and is defined 

by: 
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with being its derivative at Frequency ω and 

wave number k are related by the dispersion equation. 

)(0 dZ  z 

The diffraction, i.e. 0
q q
D   , the motion–, and pressure– 

dependent radiation potentials around the isolated q device, 
when it is considered alone in the field, are expressed in its 
own cylindrical co–ordinate system  zq ,rq ,  as follows: 
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Here ρ is the water density. 

The potentials l
j (l ≡ q,  qp ; j=D, 1, …, 6, P; p, q = 1, 2,…, 

N) are solutions of Laplace's equation in the entire fluid domain 
and satisfy the following boundary conditions: 
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 (9) 
at the outer and inner free sea surface  , and the zero 

normal velocity on the sea bed . Furthermore, the 

potentials have to fulfil following kinematic conditions on the 
mean body’s wetted surface:  
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Here   / qn 


denotes the derivative in the direction of the 

outward unit normal vector , to the mean wetted surface 

on the q–th body, and 

qn


,0
qS pn
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 are its generalized components 

defined as 1 2( , , )p p pn n n pn


 and 4 5 6( , , )p p p p pr n n n n 
 

, where 

pr


 is the position vector with respect to the origin of the 
coordinate system. Finally, a radiation condition must be 
imposed which states that propagating disturbances must be 
outgoing.  

The unknown potential functions ,
,

k l
j m , k=I, III, M, IV, see Eqs. 

(6)–(8) can be established in each fluid region surrounding the 
q–th device through the method of matched axisymmetric 
eigenfunction expansions. 

The potentials, ,qp
j  (j=1, …, 6, P) around anybody q of the 

configuration due to oscillation of body p in otherwise calm 
water (motion – dependent radiation potential) or due to inner 
time harmonic oscillating pressure head in the chamber of body 
p (pressure – dependent radiation potential), can be expressed 
in the q–th body's cylindrical coordinate system, as: 
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In order to express the potentials, ,qp
j  in the form of Eqs. (11) 

and (12), use is made of the multiple scattering approach 
(Twersky, 1952; Okhusu, 1974). This method has been further 
elaborated to solve the diffraction and the motion – dependent 
radiation problems around arbitrarily shaped, floating or / and 
submerged vertical axisymmetric bodies by Mavrakos & 
Koumoutsakos (1987) and Mavrakos (1991) and for the 
diffraction and the pressure – dependent radiation problems for 
an interacting array of OWC’s devices by Konispoliatis & 
Mavrakos (2013b); thus, it will be no further elaborated here. 

VOLUME FLOW 
The time dependent volume flow produced by the oscillating 
internal water surface in q OWC device, q=1,2,…,N, is denoted 

by     ti
qq

q
qq

q ezrqtzrQ   ,,Re;,, , where: 
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Here zu denotes the vertical velocity of the water surface, and 

the inner water surface in the q device.  q
iS
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Assuming that the Wells turbine is placed in a duct between the 
q device’s chamber and the outer atmosphere and that it is 

characterized by a pneumatic admittance , then the total 
volume flow is equal to [Evans & Porter; 1996, Falnes; 2002]: 

q

   tPtQ q
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According to [Sarmento & Falcao; 1985, Falcao 2002], for the 
Wells turbine, can be obtained: 
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Where K is constant for a given turbine geometry (independent 
of turbine size or rotational speed), D is turbine rotor diameter, 
N is the rotational speed (radians per unit time) and a , are 

the atmospheric density and pressure.   
aP

Decomposing the total volume flow, , of the q–th device, 

same as for the velocity potential; see Equation (2), into three 

terms associated with the diffraction, , and the motion– and 

pressure– dependent radiation problems,
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After substituting Equation (15) into Equation (16), it reveals 
convenient to express (16) in matrix formulation, for all the 
devices of the ar ay, i.e.: 
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Here:  N
Dq ,  N

inp 0  are (Nx1) vectors containing the diffraction 

volume flows and the inner oscillating pressure head, 

respectively, in all the devices of the array;  NB  is a (N x N) 

square matrix;  N
jx 0  is a (6Nx1) vector containing the 

prescribed motion displacements of each device of the array 

and  N  is a (Nx6N) matrix. 

The elements of the (N x N) square matrix,  NB , and (Nx6N) 

matrix,  N , are qp
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HYDRODYNAMIC FORCES 
The various forces on the q oscillating water column device can 
be calculated from the pressure distribution given by the 
linearised Bernoulli’s equation:   

tiq
q

qq ei
t

tzrP  
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Where  is the q devices’ velocity potential in each fluid 

domain I, III, M and IV. The horizontal and vertical exciting 
forces and moments acting on an array of OWC devices have 
been presented in Konispoliatis & Mavrakos (2013b).  

q

The hydrodynamic reaction forces and moments  acting on 

the device q in the i–th direction due to the oscillation of body 
p in the j–th direction, can be calculated by the Equation (19) 

and the complex form may be written in the form 

(Newman, 1977): 
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Here,  are the well–known added mass and damping 

coefficients. 

, , qp
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In the same way, the hydrodynamic pressure forces and 

moments  acting on the device q in the i–th direction due 

to oscillating pressure head in the p device can be written in the 
form: 
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Here  are the pressure added mass and dumping 

coefficients, respectively. 
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The total hydrodynamic forces on the entire multi–body 
configuration when it is considered as a unit can be calculated 
by properly superposed the corresponding forces on each 
device with respect to the reference point of motion, G, of the 
entire structure. To this end use is made of the following 6x6 
square matrix which contains the coordinates of the reference 
point for the motions of the p–th device with respect to the 
reference point for the motions of the entire configuration (for 
details see Mavrakos, 1991), i.e.: 
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Here  ppp zyx ,,  are the coordinates of the reference point for 

the motions of the p–th device with respect to the global co – 
ordinate system G. 

MOTION – PRESSURE EQUATIONS  
The investigation of the equilibrium of the forces acting on the 
freely floating array of OWC devices leads to the following 
differential system of motion equations, in the frequency 
domain, i.e.: 
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where and  are elements of the (6x6) mass and stiffness 

matrices, respectively, and is the sum of the exciting and 

pressure hydrodynamic forces acting on the device q at the k–th 
direction. 

q
kjm q

kjc

q
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Next, by accounting for the Eq. (21), Eq. (23) can be written in 
the f l owing ma rix form: o l t
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Here  N  is a (6Nx6N) square matrix;  NC  is a (6NxN) 

matrix and  N
Df  is (6Nx1) vector containing the exciting 

forces acting on each device of the array. 

The elements of the (6Nx6N) square matrix,  N , and (6NxN) 
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array. 
The motion components for each freely floating device of the 
array and the pressure in each device’s chamber are the 
unknown terms of the problem. These terms can be obtained as 
the solution of the Equations (18) and (24).  
 When the multi–body configuration is considered as a unit, 
then the system of motion equations can be written as: 
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where and  are elements of the (6x6) mass and 

stiffness matrices of the entire configuration; are the 

hydrodynamic masses and potential damping of the entire 
configuration; is the sum of the exciting and pressure 

hydrodynamic forces acting on the multi–body system at the i–
th direction and  is the motion displacement of the entire 

OWC system at the i–th direction with respect to a global co – 
ordinate system G.. 
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The linear translation and rotational motions of the entire OWC 
system, , can be expressed though the translational and  

angular motions of the p–th device, , using the following 

relations 

0jx

p
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Here,  , , p p px y z are the coordinates of the reference point for 

the motions of the p–th device, with respect to G.. In this way, 
the displacement of the entire OWC system and the inner 
pressure head inside each of the devices when they assumed as 
a rigid platform can be calculated as an extension of the 
differential systems of the Equations (18) and (24). 

 

POWER ABSORPTION 
The power absorbed, P, by each OWC device of the array is 
the sum of the power absorbed by the q–th device as a result of 
oscillation in mode j, and the power absorbed through the 
oscillating internal water surface (Falnes, 2002), i.e.: 
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Here, q
inp 0 , q

jf  are the complex conjugates of   

respectively. The terms  and  in a matrix form, from 

Equations (24) and (18), can be written as: 
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where    ,  , qq qf are (6Nx1), (Nx1), vectors containing the  

and elements, respectively; 
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are defined at Equations (24), (18), respectively. 
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The Equation (27), through Equations (28) and (29) can be 
written in a matrix form (Falnes, 2002), i.e.: 
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where N , , Nu N  are complex vectors, (7Nx1), and complex 
hermitian matrix, (7Nx7N), respectively, equal to: 
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Here “T” denotes the transpose matrix. 
If there is no constraint on the complex amplitudes of the 

components of column vector , the maximum value of the 
absorbed power is (Falnes, 2002): 
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corresponding to an optimum oscillator amplitude vector 







 

 NNN
opt Eu 

1

2

1
  (33) 

where,
1NE is the inverse matrix of NNE  .   
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NUMERICAL MODELLING 
A numerical model of an array of three identical OWC devices 
placed at a triangle ordinance (Figure 4) was built in the 
frequency domain. Each device’s oscillating chamber was 
supplemented by a concentric interior piston– like truncated 
cylinder. Three configurations were examined; firstly, the 
examined devices were assumed to float independently; 
secondly, they were connected together forming a freely 
floating multi–device system and finally, a mooring system was 
installed to the system of OWC devices. The presented results 
were obtained using the Hydrodynamic Analysis of Multiple 
Vertical Axisymmetric Bodies (HAMVAB) software. 
 The geometrical characteristics of each of the OWC devices 
are: ; ; ; ; 

 and 

qq ba 

qh  10(,1

qq bb  357.0,1

qb)7/

qbd  29.14 qq bhd  )7/4(

d  2312  13 qb 57.3 mbq 14;   

(for definitions see Figs. 3,4). For the first configuration the 
mass and the mass moment of inertia relative to the reference 

point of motions, is 1646.195 tn  and 17169 , respectively. 
For the second configuration the mass and the mass moment of 
inertia of the entire multi–body system considered as a unit 
with respect to the centre of gravity, is 4938,6 and 

, , respectively. 

The coordinates of the centre of gravity are (28.86, 0,-4.05). In 
the third configuration the platform is moored through vertical 
tendons as a Tension Leg Platform (TLP). The mass of the 
OWC’s system is assumed 1635,7tn and the mass moment of 
inertia of the entire multi–body system with respect to the 
centre of gravity, around X-,Y-,Z- axis, are the same as the 
above. Each mooring line attachment point is located at the 
vertical axis of each interior concentric cylinder. The point’s z–
coordinate on each device, relatively to the global co–ordinate 
system G is 180m. The spring constant of each of the mooring 
lines in the x and y direction due to unit translational motions 

2.mtn

tn
2tn.m2 1106000 tn.mI yy I xx  1987000I zz 

 
Figure 4: Array of three oscillating water column devices 
placed at a triangle ordinance 

 

of each attachment point along these directions is 60 , 
whereas in the z direction is 14700 . Finally, the 
pretension of each of the mooring lines in the z direction is 
10800  

mkN /
mkN /

.kN
 A regular monochromatic wave is propagating along the 
positive x–axis at zero angle of incidence, the origin of the 
global cartesian co–ordinate system is on the sea bed and its 
vertical axis directed positive upward coinciding with the 
vertical axis of the first device local coordinate system (Figure 
4).  

 The pneumatic admittance for all the OWC’s was 
considered as a real and positive number equal to the optimum 
coefficient 

q

opt of the same restrained OWC device but in 

isolation condition as in Evans and Porter (1996) work. 
 Before presenting the results obtained from the model, we 
shall introduce the non–dimensional form of the parameters of 
interest.  
The non–dimensional exciting forces on each device q of the 

array and on the entire OWC system, , ,
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The non–dimensional inner air pressure in each device q is 
defined as: 

,)2/(
~ 0
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Here g is the acceleration of gravity. 
The non–dimensional horizontal– vertical– displacement and 

the pitch rotation of each device q,  qqq xxx 503010
~,~,~  and of the 

multi–device system,  TTT xxx 503010
~,~,~ , respectively, is defined by: 
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The non–dimensional absorbed power from each device q is 
defined as: 

,
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 In Figures 5 and 6 the horizontal, q
xf

~
, T

xf
~

, and vertical, 

, , exciting forces acting on each device q of the array, 

and on the multi–device system are plotted versus ω, q=1,2,3.  

q
zf

~ T
zf

~

 In Figures 7, 8, 9 the horizontal and vertical motions and 
the pitch angle are plotted versus ω. In these figures the 
displacement and rotation of each freely floating 
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body,  qqq xxx 503010
~,~,~ , and the displacement and rotation of the 

freely floating or moored multi–body array,  TTT xxx 503010
~,~,~ , is 

presented. It is noticeable that the vertical displacement of the 
moored multi–body array is much lower than the vertical 
displacement of the individual floating OWC’s and of the 
freely floating multi–body array. Thus the air pressure inside 
each device of the moored multi–body system would be higher 
than in the rest configurations. 
 A better view of the above conclusion can be seen at 
Figures 10 and 11 where the modulus of the inner pressure, 

q
inp 0

~ , q=1,2,3, in each device of the array when they are 

floating separately; or as a unit; or they are moored as a unit 
versus ω, is being presented. It is noticeable that the air 
pressure inside the devices of the moored multi–body array is 
much higher than in the devices floating independently or as a 
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Figure 5: Horizontal exciting forces through x axis acting on 
each device of the array and on the multi–body configuration 
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Figure 6: Vertical exciting forces acting on each device of the 
array and on the multi–body configuration 
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Figure 7: Horizontal displacement (surge motion) of each 
freely floating OWC and of the freely floating or moored 
multi–body array  

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

1,6

1,8

2,0

0,0 0,5 1,0 1,5 2,0 2,5 3,0

ω [rad/s]

X
3

INDIVIDUAL FREE FLOATING BODY 1
INDIVIDUAL FREE FLOATING BODIES 2,3
FREE FLOATING ARRAY
MOORED ARRAY

 
Figure 8: Vertical displacement (heave motion) of each freely 
floating OWC and of the freely floating or moored multi–body 
array 
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Figure 9: Pitching angle of each freely floating OWC and of 
the freely floating or moored multi–body array 
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Figure 10: Modulus of the inner pressure inside the first device 
when it is floating independently; as member of the floating 
unit; as member of the moored unit 
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Figure 11: Modulus of the inner pressure inside the second – 
third device when it is floating independently; as member of 
the floating unit; as member of the moored unit 
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Figure 12: Absorbed wave energy by the first OWC device of 
the array when it is floating independently; as member of the 
floating unit; as member of the moored unit 
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Figure 13: Absorbed wave energy by the second – third OWC 
device of the array when it is floating separately; as a unit; 
moored as a unit with the others 

unit. It is reminded that in order to produce the inner air 
pressure results we claimed that the turbine’s pneumatic 
admittance is equal to an optimum value which maximizes the 
absorbed energy by the OWC device when it is considered 
restrained in wave impact and in isolation condition. 

 Finally, at Figures 12 and 13 the absorbed energy, , by 
each of the three devices when they are floating separately; or 
as a unit; or they are moored as a unit, versus ω is depicted. As 
it can be seen from the figures the devices of the moored multi–
body array absorb more wave energy than the floating 
independently or as a unit OWC’s. 

qE

CONCLUSIONS 
An exact method for solving the diffraction, the motion– and 
the pressure– dependent radiation problems around an array of 
floating OWC devices has been presented. The produced inner 
pressure in each OWC device and the motion components of 
each OWC were obtained by solving a differential motion–
pressure equation system. The pressure distributions inside the 
chambers for the case of independently freely floating devices, 
as well as for the case of freely floating and moored array of 
OWC’s were presented and compared between each other. The 
results of this analysis show the importance of the 
hydrodynamic interaction effects and the motion characteristics 
of each device in evaluating the absorbed wave power. 
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