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ABSTRACT

An increased interest in the use of Oscillating Water
Column (OWC) devices in recent years has led to the
consideration of a number of differentiations in geometry (wall
thickness, draught, shape of the chamber), topography
installation (on-, near-, off - shore), moving conditions
(restrained, freely floating bodies) and number of used devices
in order to extract maximum wave energy. Many considerable
efforts and advances have been made to wave power absorption
by isolated devices; however, much less attention has been paid
to the influence of neighbouring OWC structures on wave
loading and wave energy extraction. This paper deals with the
linearised hydrodynamic interaction problem of regular, small
amplitude, surface gravity waves and a stationary group of
vertical axisymmetric OWC devices.

1 INTRODUCTION

The problem of the hydrodynamic interaction among
neighbouring OWC devices is of a particular importance in
evaluating the absorbed wave energy by a device since the
hydrodynamic characteristics of each member of a multi-body
configuration may differ from the ones obtained for an isolated
device due to hydrodynamic interaction phenomena. Each
device of the configuration scatters waves towards the others,
which in turn scatter waves contributing to the excitation of the
initial device and so on. Here, the method of multiple scattering
will be used to capture the hydrodynamic interaction
phenomena among the multiple — body arrangement. The
method relies on single OWC device hydrodynamic
characteristics and takes into account the interaction effects by
the implementation the physical idea of multiple scattering. The
latter was introduced by Twersky (1952) in studying the
acoustic scattering by an array of parallel cylinders and was
applied to free-surface wave interactions with floating bodies
by Ohkusu (1974) who investigated the case of three adjacent,
floating, vertical truncated cylinders. The method was extended
by Mavrakos and Koumoutsakos (1987) and Mavrakos (1991)
for the solution of the diffraction and radiation problems by an

array of arbitrarily shaped vertical axisymmetric bodies with
any geometrical arrangement and individual bodies’
geometries. For the isolated body — wave interaction, the
method of matched eigenfunction expansions is used for the
evaluation of the diffraction (body fixed in wave, atmospheric
pressure in the chamber) and the radiation velocity potentials in
properly defined fluid domains surrounding each device. The
radiation potential results from an oscillating pressure head
acting on the inner free surface of the OWC.

In the present contribution, numerical results concerning
exciting wave forces and moments on each device of the OWC
array, as well as air flow rates associated with the diffraction
problem in each body are presented. In addition, forces
originated from the air pressure head in each device’s chamber
and air flow rates due to pressure-dependent-radiation problem,
for several turbine parameters are computed. The value of the
inner pressure head in each device of the OWC array is also
compared with the corresponding one of the isolated OWC
device and the influence of neighbouring bodies on the total
wave field and the associated hydrodynamic loading of the
individual columns assessed.

2 FORMULATION OF THE
PROBLEM

We consider a stationary group of N rigid vertical axisymmetric
oscillating water column devices excited by a plane periodic
wave of amplitude H/2, frequency @ and wave number k
propagating in water of finite water depth d. The outer and
inner radii of each device ¢, ¢=1, 2,..., N, are a,b,,
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respectively, whereas the distance between the bottom of the ¢
device and sea bed is denoted by 4, (Fig. 1). It is assumed

small amplitude, inviscid, incompressible and irrotational flow,
so that linear potential theory can be employed. A global
Cartiesian co—ordinate system O—XYZ with origin on the sea
bed and its vertical axis OZ directed positive upwards is used.

Moreover, N local cylindrical co-ordinate systems (rq,Hq,zq ), q

=1, 2,..., N are defined with origins on the sea bottom and



their vertical axes pointing upwards and coinciding with the
vertical axis of symmetry of the ¢ device.

The fluid flow around the ¢g=1,2,...,N device can be described
by the potential function:

CDq(rq,ﬁq,z;t)zRe@q(rq,ﬁq,z)-e_i”t} €))
Following Evans (1982) the spatial function ¢? can be
decomposed, on the basis of linear modelling, as:
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Figure 1. Definition sketch

Here, ¢ is the velocity potential of the undisturbed incident

harmonic wave; ¢7 is the scattered potential around the g

device, when it considered fixed in waves with the duct open to
the atmosphere, so that the pressure in the chamber is equal to

the atmospheric one; ¢§P is the radiation potential around the g-
th body due to time harmonic oscillating pressure head,
PP = Re{p{,’lo e }, in the chamber for the p device which is
considered fixed in otherwise calm water.

The potentials ¢} (I = ¢, gp ; j=0, 7, P; p=1, 2,..., N) are
solutions of Laplace's equation in the entire fluid domain and

satisfy in the entire fluid domain the following boundary
conditions:

o0 0 for 7, 2a;l=qorgp j=0,7,P
o —g;’: 0 for 0<r <b, j=0,7 (3)
_5@%)1710 for 0<r <b;l=gp j=P
at the outer and inner free sea surface (z = d),
og} .
6_:() for j=7,P on the seabed (z=0) 4
/4
og?
9 0 for j=7.p )
on

on the mean device’s wetted surface S
Where 8( )/dn denotes the derivative in the direction of the

outward unit normal vectorn, to the mean wetted surface
Sd on the g-th body. Finally, a radiation condition must be

imposed which states that propagating disturbances must be
outgoing.

The velocity potential of the undisturbed incident wave
system, ¢ , propagating at angle B, (Fig. 1), to the positive x—

axis can be expressed in the cylindrical co—ordinate frame of
the g—th body as follows [Mavrakos & Koumoutsakos, 1987]:

o0

. H . im,
#00,52) =0 3 1"V (7" ©)
Where
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In accordance with the above Equation (6) the scattered and the
pressure radiation potential due to the oscillating pressure head
in the g-th device, expressed in the isolated g—th device’s
cylindrical co—ordinate system (rq,ﬁq,z) can be described by:

o0

#(r,.0,,2) = —ia)% Zi’"‘{’;{m (r,, 2% (8)
m=—0

qq 0 _ Ping & N7 imby 9

Pp (l”q, q’Z)_%m:Z:—oo P,m(quZ)e ( )

The unknown potential functions ‘P]‘{m, and ‘I’}’j{m j=1"P,

involved in (8), (9) can be established through the method of
matched axisymmetric eigenfunction expansions.

According to this method, the flow field around the device ¢ is
subdivided in coaxial ring—shaped fluid regions, categorized by
the numerals I, 7/l and M (Fig. 1). In each fluid domain,
different series expansions of the velocity potential are made.
The adopted series representations, which are solutions of the
Laplace equation in each fluid region, are selected in such a
way' that satisfy the corresponding conditions at the horizontal
boundaries of each fluid region and, in addition, the radiation
condition at infinity in the outer fluid domain. As a result, the



velocity potentials in each fluid domain fulfil a priori the
kinematical boundary conditions at the horizontal walls of the
bottomless cylindrical duct, the linearized condition at the free
surface, the kinematical one on the sea bed, and the radiation
condition at infinity.

At this point it should be mentioned that although the radiation
potential @’ , around the isolated body ¢ involves only

the m =0 term [Mavrakos & Konispoliatis, 2012], its series
representations in form of Eq. 9 has been preferred at this stage
of the analysis in order to obtain a similar representation with
the one of the total potential, ¢Z , induced around any body ¢
of the configuration due to the inner pressure in body p. This
potential has to be expressed in the g—th body's cylindrical
coordinate  system  (r,,6,,z) and generally includes

components for all values of m accounting for interference
effects. Indeed, in accordance with Equation (9), ¢# can be
expressed as:

p? .
(ry.0,.2) =" ; ZW( ,2)e™ (10)
Since the solution of the diffraction problem around multiple
body configurations has been calculated by Mavrakos and
Koumoutsakos (1987) and Mavrakos (1996), and the
function ¥/, from Eq.9, by Mavrakos and Konispoliatis
(2011), the principal unknown of the problem is the
function W . In order to express the potential in the form of

Equation (10), Twersky’s (1952) multiple scattering approach
is implemented in the present formulation.

In doing so, we first assume that the isolated OWC device p
(p :1,2,...,N) of the arrangement has an inner air pressure

head different from the atmospheric one (i.e. close duct in the
oscillating chamber), with the remaining devices being

considered open to the atmosphere. In response to this pressure,
the body p radiates its “zero order of radiation”, °

Equation (9). Thus,

N

D gt (11)
p=1

is a first approximation to the total velocity potential radiated
by the entire multiple—device configuration in the absence of

75 » given by

interaction phenomena. The radiation potential, ¢7 5,
represents a “first order of
excitation”, ! o ,( =12,.,N;q# p) for each of the remaining
devices of the arrangement in response to which they radiate a
LN;q # p). The total
“first order potential” around the body ¢g due to inner air

P =1 b L 1gdt g % p has to satisfy

“first order of scattering” ' ( =12,.

pressure in the body p,

the boundary conditions on the open-duct device in the g—th
co-ordinate system. Especially, for the body p, with inner air

pressure different to the atmospheric one, the “first order”
incident and scattered, wave potentials, denoted by '¢% and

17171@, respectively, due to the remaining bodies of the

arrangement vanish in the context of the present formulation.
Indeed, as the remaining bodies of the arrangement are
considered open to the atmosphere, they do not radiate any
potential of “zero order” at all that would contribute to the
“first order of excitation” of the p—th body, i.e.

g9 =0, forq=1,2,...,N,q#p (12)

All the waves of the “first order of scattering” from the
remaining open—duct devices can be considered as a “second

order of excitation”, ’¢f% , for the body ¢ (¢ =1,2,..,N), i.e.
N

i = Z(l 54q)1¢7p (13)
=1

The g—th body radiates a wave of “second order of scattering”

denoted by ¢
body ¢ due to inner air pressure in the body p,

. The total “second order potential” around the

2w =g 2gdh | g = p, satisfies the boundary conditions on

the open—duct device in the g—th coordinate system. The same
conditions remain valid even if the body ¢ coincides with the
body p with inner air pressure because the inner and outer free
surface boundary condition for body p has already been

fulfilled through the solution’¢#% . For all the potentials of

higher order interaction, *¢$”, s > 1, it holds:
s 4 PP
w2s¢1717_ga¢17 — 0 for rPZap (14)
P Oz 0 for 0<r,<b,
In this fashion we proceed to the s—th order of interaction for
each device g (q =12,.,N ) of the arrangement. The

corresponding incident and total wave potentials will be
respectively:

N
‘o = Z(l -5, ' (15)

(=1
="gip+'d7p (16)
Where‘¢qp ,s>1, satisfies the boundary condition on the

open—duct device. Now, letting s approach infinity and
summing over the various interaction orders, the total wave
potential induced around the body ¢ of the multiple—component
configuration due to the air pressure head inside of body p, can
be expressed as:
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gp(”q"gq’z): OP(tI’ q’ )+¢ (q’ q’ ) Z

0

O 1 0 2) 30 5.0,

§=



o N
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It is obvious from the above formulatlon that the total velocity

potential, ¢/, it is constructed in such a way that the imposed

boundary conditions will be satisfied in the co—ordinate frame
of the g—th, (q =12,..,N ), device. Indeed in cases where the
examined device g coincides with the close—duct device p, the
appropriate boundary condition on body p (Eq. 3) is satisfied
by the term °¢/%
of the above equation do not affect the validity of the imposed
boundary condition since they are selected as solutions of the
open - duct problem around any device of the arrangement.

Oppositely, if g is an open—duct device, the boundary condition
(Eqg. 3) in its coordinate system will also be satisfied from all

the terms, *¢/”, of the Equation (17) while the term, ¢7 5, will

be absent.
In this way the problem is reduced to the determination of the

of the Equation (17). All the remaining terms

unknown potentials, *¢ , which by means of Equation (16) are
expressed as a superposmon of the s—th order wave scattered

by the body ¢, ‘%, and the (s —1)~th order waves scattered by
the remaining bodies, *'¢/5, (£ =1 2,...,N'€ # q).

Each order of scattered wave potential’¢/5, s>1, can be

described in terms of cylindrical wave functions as [Mei, 1983;
Mavrakos and Koumoutsakos, 1987]:

pf,’,o - S\ P imé,
,0,,2)=—— E WY (1,2 a 18
¢ ( q q ) l(()p - 7P, ( q )e ( )
For the outer fluid domain of body ¢, i.e. 7,5a,, 0<z<d:
W (1 2) = 2 spor Knlaya) 5 (19)
TP,m Pm,j K ( ) J

Where K, is the m—th order modified Bessel function of
second kind, and Z,(z)are orthonormal functions in [0,d]

defined as follows:

Zy(2) = Ng"'? cosh(kz), j=0 (20)
Z,(2)=N;"cosla;z), j=1 1)
Where
Ny = 1 14+ sinh(2kd) 22)
2 2kd
sin(2a ;d
Nj = l 1+M (23)
2 2a;d

Here k is the wave number related to « through the dispersion
equation:

o* = kg tanh(kd) (24)
Whereas a ; are the real solutions of the equation:

0)2
—+; tanh(a;d) =0 (25)

The s—th order scattering coefficients *F;  (Eq.19) will be

obtained through the solution of the respective order of
diffraction problem —described by the velocity potential *@Z”
in the co-ordinate frame of body ¢. Once these
coefficients, " F i) ;» have been determined, the potential, SoF,
around the body ¢, (¢ = 1,2, . . .,N), of the arrangement can be
found by proper substitution of Equation (18) in (16).

However, since each of the scattered waves *~'¢2(r,,6,,z),
(£=12,.,

terms of different co—ordinates, using a Bessel functions
addition theorem, the velocity potentials expressed in the
(r(,,ﬁg,z) co—ordinates may be transformed to expressions in

z). From Watson (1966) it is

N;(# p), contributing to ‘¢, are expressed in

the reference co-ordinates (rq,Hq,

confirmed that:

Kv (ajr/, )eive/ = Z (_ l)m Kv—m (ajf/,q )Im (ajrq )e[(lkm)gﬁq e[mgq

m=—0

for r, <, (26)
Where /,, denotes the m—th order modified Bessel function of
first kind and 7, is defined in Fig.1.

From Abramowitz and Stegun (1970), it holds:

K, (~ikr )_ i"H,, (kr,) (27)
and
S (kry) =i, (=ikr,) = "1, (ayr,) (28)

for the imaginary root a, = —ik . Thus, it can be obtained:

H(kr)e™ = " H, (K ), (ke ™7™ (29)

m=—oo
Using the above relations all terms of the s—th order velocity

potential ‘¢’ , described by Equation (16), are now expressed

in the co—ordinate frame of the g—th body, i.e.
P& -
B (,0,,2) =2 N W (2™ (30)
lwp = ’

Where for the outer fluid domain, i.e.ra,,0<z<d the

function *W#  is given by:

s — Iy(ar,) K, (a;r,)
MR e e ") ey )G
i=0 J q mi=jrq



where:

s Y v—m( )n( )y i(v—m)0,
G —Za %)Z o UL (32)

Py,
ajy) Y

The ﬁrst term in Equat10n (31) represents the contribution of
the s—th order incident wave, @i, to the potential ‘g%,

whereas the last term describes the scattered wave field of the
corresponding order.

Using the expressions (30) and (31) the total wave field in the
outer fluid domain, i.e. 7, 2a,, 0<z<d, given by Equation

(17), can be written in the form of (10) with:

o0
1 (a irg) Km(a irg)
W (r,2)=8,,¥E (r ,z)+z qlp MJAd | pap 1_17(2)
P.m>q qp " Pm* P ~ Pm, j Im(ajag) Pm,j g mlajag)

(33)
Where:
» r,)
lPP,m( Z) ZFPm J Z_/(Z) (34)
Km( J p)
and
G, = Z G (35)
s=1
iy = 2 Fin (36)

s=1

The first term in (33) represents the isolated device wave field
around the p body due to its own internal pressure variation,
the second term denotes the incident wave fields on body ¢
emanating from the scattered fields of the remaining devices
considered open and the last term is the scattered wave filed
around the ¢ —th device.

The corresponding expressions for the total velocity potential
in the /I and M fluid regions are:

I, b Ji/4 yild
¢p (1,0 Z)—— Lm0, {Z ;1[(FPmZp+§ FPO;QD)R +
m=-ow| n=0

el 5, Frllr )Rmn]cos<h—>}e””q (1)

0

M,q P M
0 (1. 0,.2) = za;jf Z[ w €y z>+Z<Fpm‘£"+6 Fpoid)

Inl@nty) 4 (2ye (38)
1,,(a,b,)
Where

o0 o0

Fii = Fpmd? and Fpp = St (39)
s=1 s=1
<h‘f>l< ")1( DK,
Rmn (rq) - nma z q ﬂté)q n7:aq (40)
I ( K, ( ) =1, ( K, ( ; )
q q q q
I ( q)lf ( q) K ( q)l ( )
R* (I" )_ hq ‘1 q q (41)
mnq nma, q ﬂbq nma,
I ( )Km( )1, ( K, ( P )
q q q q
4]
7 a
mO(r )_ m mO(r) (42)

r o ) 1, m=0
r,,z)=
Ermlp 0. m=0

and ¢, is the Neumann’s symbol: ¢, =1, ¢,=2,n2>1.

(43)

At this point we note that the form of the selected solutions for
the velocity potentials in each fluid domain ¢Pqp i=L1I,M,

is such that the boundary conditions at the horizontal
boundaries of each fluid region and, in addition, the radiation
condition at infinity in the outer fluid domain are a priori

satisfied. Moreover, the potential functions g% ,i= 1,11, M

have been constructed in such a way that their homogeneous
parts can be reduced to simple Fourier series at the vertical
boundaries of adjacent fluid regions. This feature of the
velocity potential representations facilitates essentially the
solution procedure. The kinematic conditions at the body’s
vertical walls, as well as the requirement for continuity of the
potential and its radial derivative at the vertical boundaries of
neighboring fluid domains remain to be fulfilled.

Expressing these conditions an infinite system of linear
equations for the determination of the unknown s—th order

scattering coefficients,*F#? ., in the fluid domain 7 of each

Pm,j >
device is obtained, can be written in follow general matrix
form:

[l 2 §=[col+ D5 (44)
where {D5L% { denotes a complex vector whose elements are
related to *Gj) ., given by Equation (32), [E] is a square

matrix its elements depend exclusively on the particular



geometry of the examined device and the characteristics of the
incident wave, and [C,] is a column matrix due to inner

pressure in each device of the configuration. Having the
Fourier coefficients in the outer fluid domain determined, the

corresponding ones *Fi14 SEM-%  needed for the series

representations of the potential functions in the //] and M fluid
region, respectively, can be calculated as well.

3 VOLUME FLOW
The time dependent volume flow produced by the oscillating
internal water surface in ¢ OWC device, ¢g=1,2,...,N, is denoted

byQ‘f(q,E’q,z t) Re[q (q’gq’z),e—iwtj

where:
r,dr,do, (45)

q —“.u ds; = “.u(r ,0,,2=d drqdﬁqzjjag;q 4
%

Here u, denotes the vertical velocity of the water surface, and

S{ the inner water surface of the ¢ device. It proves convenient

to decompose the total volume flow, g7, of the ¢ device, same
as for an isolated device, into two terms associated with the

diffraction, ¢, and the pressure—dependent radiation

problem, g} , as follows:

g% =qb +qb =qb - piy(B” —iC”) (46)
where BYand C?are the corresponding radiation conductance
and susceptance, respectively. Assuming uniform pressure
distribution inside the chamber, it can be shown that, even
though all m-modes terms affect the values of the diffraction
and radiation potentials, by substituting those potentials in
Equation (45) only the modes with m =0 -contribute to

g% and ¢}, as in an isolated device [Mavrakos & Konispoliatis,

2011].
The volume flow associated with the diffraction and pressure
radiation problem, is obtained as:

g J1(kb,)

N2 cosh(kd) +
DOOkJO(kb) 0 (kd)

qh= —lw—ﬁdzﬂ'b
g

w I(a,b,)
> FMa 1T N2 00ga d 47
Zl D0 b (a,d) (47)

Pmo M ,qp J (kb ) ~1/2
= 27b, | F, ——N, h(kd) +
qp = (-iw)="> [ P0,0 Ko (kb ) o ~cosh(kd)

= I(ab P
Z P 1( n q) Nll/ZCOS(and)J_éqpl-wme 27pr
= a,ly(a,b,) Prg

J, (kb 2 I
Ftp D) vz cochihay + Z N@by)
" kJo(kb,) = a,ly(a,b,)

cos(a,d )J (48)

Assuming that the Wells turbine is placed in a duct between the
chamber and the outer atmosphere, of the g device, and it is
represented by a pneumatic admittance A7, then the total
volume flow is equal to [Evans & Porter; 1996, Falnes; 2002]:
0"(c)=A"-Bi(r) (49)
According to [Sarmento & Falcao; 1985, Falcao 2002], for the
Wells turbine, can be obtained:

KD .7
g =L > +(_ZCU)7TS:|P§10 (50)

a

Where K is constant for a given turbine geometry (independent
of turbine size or rotational speed), D is turbine rotor diameter,
N is the rotational speed (radians per unit time) and p, , P, are

the atmospheric density and pressure.

4 WAVE FORCES
The various forces on the ¢ oscillating water column device can
be calculated from the pressure distribution given by the
linearised Bernoulli’s equation:

q

(q; q,Z t):—pa%:l‘a)p¢q.e*i(ut (51)
Where ¢? is the g devices’ velocity potential in each fluid

domain 7, II] and M.

The horizontal and vertical exciting forces on the device have
been presented in Mavrakos (1996), as the diffraction problem
for an array of moonpool bodies is the same as for a group of
OWC devices and thus, they will be no further elaborated here.

The hydrodynamic reaction forces and moments F,%” acting on
the device ¢ in the i—th direction due to pressure in the p device
with inner pressure pl and frequency w, can be obtained:

F% = [ g7l = _J- Iiwp¢zp e . nlds (52)

Where n/ are the generalized normal components defined by:
nq:(nf,ng,ng), rqan:(nj,ng,ng) (53)
and r? is the position vector of a point on S{ .

Furthermore, the complex force £, may be written in the
form:

=l v Lay ) oty 54

Where ef”,d/” are the added mass and dumping coefficients,
respectively.



5 NUMERICAL RESULTS

The calculation of the coefficients F'.

Fourier i s

F ;,{iq,FJZ[’;,F jl‘,;,[’i, Jj=D,P is the most significant part of the
numerical procedure, because they affect the accuracy of
solution. For the present calculations, in the first and the M-th
ring elementi = 20 terms were used, while for the third ring

element ¢ = 40 . In addition, the presented results were obtained

for five order interactions.
In figure 3 an array of three identical oscillating water column
devices placed in a row is examined , for a, = 2bq ,d= 7.5bq s

d—h,=(5/2)b,, and l,=10,;=100b, (for definitions see

Fig.2.), in order to compare the dimensionless total vertical
force on each body of the array with the results of Mavrakos &

Konispoliatis (2012) work for a unit pressure head p{,,
q =123, (vertical force in the device ¢ due to its own internal

pressure head and hydrodynamic reaction forces in vertical
direction due to inner pressure in the remaining bodies). The
incident wave is propagating to the positive x—axis at zero
angle of incidence, the origin of the Cartesian co—ordinate
system is on the sea bed and its vertical axis directed positive
upward coinciding with the vertical axis of the second device
local coordinate system.

312 .lfg;
x

Figure 2. Array of three identical oscillating water column
devices placed in a row
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Figure 3. Total vertical force on each of three OWC devices
due to a unit pressure head in each device

From Fig. 3 it is obvious that due to the large inter — body
spacing, the hydrodynamic interaction phenomena do not affect
the values of the vertical forces which in the particular case
coincide with their isolated bodies counterparts. Figures 4, 5
present the hydrodynamic interaction coefficients in sway and
heave, respectively, on the second (middle) body of a three
OWC’s array configuration (see Fig.2) with ¢, =/,; =165, ,

plotted against ka, . The single body geometric characteristics
are kept the same as previously, i.e. a,=2b,,d="1.5b,,

d—h,=(5/2)b,.
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Figure 4. Hydrodynamic interaction coefficients in sway, 622 7,

d22p ,p=1,2,3, versus ka,

In figure 6 the modulus of the inner pressure for various turbine

Kl])v :1,3,6[1715 /(Ns)] versus kaq,is plotted

parameters gf =
a

for an array of OWC devices placed in a row (see Fig. 2),
ford =(8/3)b,, a, =(4/3)b,,h, =2b, ,l,; =153 =(100/3)b, .
It has been assumed, that all devices are characterized by the
sameg?, ¢=1, 2, 3, value and from Equation (50)



that ¥ / yP, =43m’ / N . The results are tested with those from
Mavrakos & Konispoliatis (2011) work.
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Figure 6. Modulus of inner pressure, [ N/m’ ], in each device of
the configuration versus ka,

Next the effect of the geometric arrangement and of the wave
propagation on the internal device pressure is investigated, with
the help of Fig. 7. The first two cases are concerned with the
configuration shown in Fig. 2. Here, the three devices are

placed in a row and the incident wave is propagating with

angles of attack equal to 0° (first case) and 90° degrees
(second case) with respect to the positive x — axis. The inter —
body spacing is chosen equal to/;, =/,;=16b, . In the third

case, the geometric characteristics of the individual devices are
kept the same as in figure 3, their geometrical arrangement
though has been changed, by considering the three devices
placed at the comers of a triangle, where
Uy, =Lly3=1013=16b,, and the incident wave propagating

along the positive x—axis at zero angle (Fig. 7). The
dimensionless modules of the inner air pressures in each of the
devices, for the three above mentioned cases are plotted in
Figures 8, 9, 10 by assuming the same turbine parameter

/il])\f = 4[m5 /(Ns)l g=1,2,3.

gt =

I a2

Figure 7. Array of three oscillating water column devices in
triangular shape

6 CONCLUSIONS

An exact method has been presented for solving the diffraction
and pressure radiation problems around an array of restrained
OWC devices. The results of this analysis show the importance
of the hydrodynamic interaction effects in evaluating the
characteristics of such multiple — device arrangements. Both
the hydrodynamic parameters and the characteristics of the
turbine parameters have to be properly combined in order to
improve the wave energy conversion.

The method is presently being extended to floating arrays of
OWC devices in order to include the radiation problem due the
motion of each body.
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