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ABSTRACT 

An increased interest in the use of Oscillating Water 
Column (OWC) devices in recent years has led to the 
consideration of a number of differentiations in geometry (wall 
thickness, draught, shape of the chamber), topography 
installation (on-, near-, off - shore), moving conditions 
(restrained, freely floating bodies) and number of used devices 
in order to extract maximum wave energy. Many considerable 
efforts and advances have been made to wave power absorption 
by isolated devices; however, much less attention has been paid 
to the influence of neighbouring OWC structures on wave 
loading and wave energy extraction. This paper deals with the 
linearised hydrodynamic interaction problem of regular, small 
amplitude, surface gravity waves and a stationary group of 
vertical axisymmetric OWC devices. 

1 INTRODUCTION 
The problem of the hydrodynamic interaction among 
neighbouring OWC devices is of a particular importance in 
evaluating the absorbed wave energy by a device since the 
hydrodynamic characteristics of each member of a multi-body 
configuration may differ from the ones obtained for an isolated 
device due to hydrodynamic interaction phenomena. Each 
device of the configuration scatters waves towards the others, 
which in turn scatter waves contributing to the excitation of the 
initial device and so on. Here, the method of multiple scattering 
will be used to capture the hydrodynamic interaction 
phenomena among the multiple – body arrangement. The 
method relies on single OWC device hydrodynamic 
characteristics and takes into account the interaction effects by 
the implementation the physical idea of multiple scattering. The 
latter was introduced by Twersky (1952) in studying the 
acoustic scattering by an array of parallel cylinders and was 
applied to free-surface wave interactions with floating bodies 
by Ohkusu (1974) who investigated the case of three adjacent, 
floating, vertical truncated cylinders. The method was extended 
by Mavrakos and Koumoutsakos (1987) and Mavrakos (1991) 
for the solution of the diffraction and radiation problems by an 

array of arbitrarily shaped vertical axisymmetric bodies with 
any geometrical arrangement and individual bodies’ 
geometries. For the isolated body – wave interaction, the 
method of matched eigenfunction expansions is used for the 
evaluation of the diffraction (body fixed in wave, atmospheric 
pressure in the chamber) and the radiation velocity potentials in 
properly defined fluid domains surrounding each device. The 
radiation potential results from an oscillating pressure head 
acting on the inner free surface of the OWC.  
In the present contribution, numerical results concerning 
exciting wave forces and moments on each device of the OWC 
array, as well as air flow rates associated with the diffraction 
problem in each body are presented. In addition, forces 
originated from the air pressure head in each device’s chamber 
and air flow rates due to pressure-dependent-radiation problem, 
for several turbine parameters are computed. The value of the 
inner pressure head in each device of the OWC array is also 
compared with the corresponding one of the isolated OWC 
device and the influence of neighbouring bodies on the total 
wave field and the associated hydrodynamic loading of the 
individual columns assessed. 

2 FORMULATION OF THE HYDRODYNAMIC 
PROBLEM 
We consider a stationary group of N rigid vertical axisymmetric 
oscillating water column devices excited by a plane periodic 
wave of amplitude H/2, frequency ω and wave number k 
propagating in water of finite water depth d. The outer and 
inner radii of each device q, q=1, 2,…, N,  are , 

respectively, whereas the distance between the bottom of the q 
device and sea bed is denoted by  (Fig. 1). It is assumed 

small amplitude, inviscid, incompressible and irrotational flow, 
so that linear potential theory can be employed. A global 
Cartiesian co–ordinate system O–XYZ with origin on the sea 
bed and its vertical axis OZ directed positive upwards is used. 

Moreover, N local cylindrical co-ordinate systems

qq ba ,

qh

 , , qzq qr  , q 

= 1, 2,…, N are defined with origins on the sea bottom and 
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their vertical axes pointing upwards and coinciding with the 
vertical axis of symmetry of the q device.   
The fluid flow around the q=1,2,…,N device can be described 
by the potential function: 

    ti
qq

q
qq

q ezrtzr   ,,Re;,,  (1) 

Following Evans (1982) the spatial function  can be 

decomposed, on the basis of linear modelling, as: 

q
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Nq q q qp p q q q
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    (2) 

 

 
 

 
Figure 1. Definition sketch 
 

Here, is the velocity potential of the undisturbed incident 

harmonic wave;  is the scattered potential around the q 

device, when it considered fixed in waves with the duct open to 
the atmosphere, so that the pressure in the chamber is equal to 

the atmospheric one; is the radiation potential around the q-

th body due to time harmonic oscillating pressure head, 

q
0

q
7

qp
p

 tip
in

p
in eP  0pRe , in the chamber for the p device which is 

considered fixed in otherwise calm water.  

The potentials l
j (l ≡ q,  qp ; j=0, 7, P; p=1, 2,…, N) are 

solutions of Laplace's equation in the entire fluid domain and 
satisfy in the entire fluid domain the following boundary 
conditions: 
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at the outer and inner free sea surface   , dz 

Pj
z

q
j ,7for0 




 on the sea bed  0z  (4) 

Pj
n

q
j ,7for0 




  (5) 

on the mean device’s wetted surface  qS0

Where   n / denotes the derivative in the direction of the 

outward unit normal vector n , to the mean wetted surface 

on the q–th body. Finally, a radiation condition must be 

imposed which states that propagating disturbances must be 
outgoing.  

qS0

The velocity potential of the undisturbed incident wave 

system, , propagating at angle β, (Fig. 1), to the positive x–

axis can be expressed in the cylindrical co–ordinate frame of 
the q–th body as follows [Mavrakos & Koumoutsakos, 1987]: 
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In accordance with the above Equation (6) the scattered and the 
pressure radiation potential due to the oscillating pressure head 
in the q-th device, expressed in the isolated q–th device’s 
cylindrical co–ordinate system  zr qq ,,  can be described by: 
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   (9) 

The unknown potential functions , and q
mj, ,

qq
P m Pj ,7 , 

involved in (8), (9) can be established through the method of 
matched axisymmetric eigenfunction expansions. 
According to this method, the flow field around the device q is 
subdivided in coaxial ring–shaped fluid regions, categorized by 
the numerals I, III and M (Fig. 1). In each fluid domain, 
different series expansions of the velocity potential are made. 
The adopted series representations, which are solutions of the 
Laplace equation in each fluid region, are selected in such a 
way' that satisfy the corresponding conditions at the horizontal 
boundaries of each fluid region and, in addition, the radiation 
condition at infinity in the outer fluid domain. As a result, the 
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velocity potentials in each fluid domain fulfil a priori the 
kinematical boundary conditions at the horizontal walls of the 
bottomless cylindrical duct, the linearized condition at the free 
surface, the kinematical one on the sea bed, and the radiation 
condition at infinity. 
At this point it should be mentioned that although the radiation 

potential qq
P , around the isolated body q involves only 

the term [Mavrakos & Konispoliatis, 2012], its series 
representations in form of Eq. 9 has been preferred at this stage 
of the analysis in order to obtain a similar representation with 

the one of the total potential, , induced around any body q 

of the configuration due to the inner pressure in body p. This 
potential has to be expressed in the q–th body's cylindrical 
coordinate system 

0m

qp
P

), zq,(rq   and generally includes 

components for all values of m accounting for interference 

effects. Indeed, in accordance with Equation (9), can be 

expressed as: 
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Since the solution of the diffraction problem around multiple 
body configurations has been calculated by Mavrakos and 
Koumoutsakos (1987) and Mavrakos (1996), and the 

function ,
qq
P m

qp
mP,

, from Eq.9, by Mavrakos and Konispoliatis 

(2011), the principal unknown of the problem is the 

function . In order to express the potential in the form of 

Equation (10), Twersky’s (1952) multiple scattering approach 
is implemented in the present formulation. 
In doing so, we first assume that the isolated OWC device p 

 of the arrangement has an inner air pressure 

head different from the atmospheric one (i.e. close duct in the 
oscillating chamber), with the remaining devices being 
considered open to the atmosphere. In response to this pressure, 

the body p radiates its “zero order of radiation”, , given by 

Equation (9). Thus, 

 Np ,...,2,1 



pp
P7

0




N

p

pp
P

1
7

0  (11)  

is a first approximation to the total velocity potential radiated 
by the entire multiple–device configuration in the absence of 

interaction phenomena. The radiation potential, , 

represents a “first order of 

excitation”, ,  for each of the remaining 

devices of the arrangement in response to which they radiate a 

“first order of scattering” . The total 

“first order potential” around the body q due to inner air 

pressure in the body p, , , has to satisfy 

the boundary conditions on the open-duct device in the q–th 
co-ordinate system. Especially, for the body p, with inner air 

pressure different to the atmospheric one, the “first order” 

incident and scattered, wave potentials, denoted by 1

pp
P7
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qp
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 pqN ;,...,2

qp
P7 pq 

0
pp
P and 

, respectively, due to the remaining bodies of the 

arrangement vanish in the context of the present formulation. 
Indeed, as the remaining bodies of the arrangement are 
considered open to the atmosphere, they do not radiate any 
potential of “zero order” at all that would contribute to the 
“first order of excitation” of the p–th body, i.e. 

pp
P7

1

7
0 qp

P
  

0 , for q = 1, 2, …, N, q ≠ p (12) 

 
All the waves of the “first order of scattering” from the 
remaining open–duct devices can be considered as a “second 

order of excitation”, , for the body q qp
P0

2  Nq ,...,2,1 , i.e. 
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The q–th body radiates a wave of “second order of scattering” 

denoted by . The total “second order potential” around the 

body q due to inner air pressure in the body p, 

, 

qp
P7

2

qp
P7

2qp
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2 pq  , satisfies the boundary conditions on 

the open–duct device in the q–th coordinate system. The same 
conditions remain valid even if the body q coincides with the 
body p with inner air pressure because the inner and outer free 
surface boundary condition for body p has already been 

fulfilled through the solution  . For all the potentials of 

higher order interaction, , it holds: 
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In this fashion we proceed to the s–th order of interaction for 
each device q  Nq ,...,2,1  of the arrangement. The 

corresponding incident and total wave potentials will be 
respectively:  
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Where , , satisfies the boundary condition on the 

open–duct device. Now, letting s approach infinity and 
summing over the various interaction orders, the total wave 
potential induced around the body q of the multiple–component 
configuration due to the air pressure head inside of body p, can 
be expressed as: 
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It is obvious from the above formulation that the total velocity 

potential, , it is constructed in such a way that the imposed 

boundary conditions will be satisfied in the co–ordinate frame 
of the q–th, , device. Indeed in cases where the 

examined device q coincides with the close–duct device p, the 
appropriate boundary condition on body p (Eq. 3) is satisfied 

by the term  of the Equation (17). All the remaining terms 

of the above equation do not affect the validity of the imposed 
boundary condition since they are selected as solutions of the 
open - duct problem around any device of the arrangement. 
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Oppositely, if q is an open–duct device, the boundary condition 
(Eq. 3) in its coordinate system will also be satisfied from all 

the terms, , of the Equation (17) while the term, , will 

be absent. 
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P
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In this way the problem is reduced to the determination of the 

unknown potentials, , which by means of Equation (16) are 

expressed as a superposition of the s–th order wave scattered 

by the body q, , and the  –th order waves scattered by 

the remaining bodies, , . 
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Each order of scattered wave potential , , can be 

described in terms of cylindrical wave functions as [Mei, 1983; 
Mavrakos and Koumoutsakos, 1987]: 
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For the outer fluid domain of body q, i.e. , qq ar  dz 0 : 
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Where is the m–th order modified Bessel function of 

second kind, and are orthonormal functions in 
mK

)(zZ j  d,0  

defined as follows: 
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Here k is the wave number related to ω through the dispersion 
equation: 

)tanh(2 kdkg  (24) 

Whereas are the real solutions of the equation: ja

0)tanh(
2

 daa
g jj


 (25) 

The s–th order scattering coefficients (Eq.19) will be 

obtained through the solution of the respective order of 

diffraction problem –described by the velocity potential – 

in the co–ordinate frame of body q. Once these 

coefficients, , have been determined, the potential, , 

around the body q, (q = 1,2, . . .,N), of the arrangement can be 
found by proper substitution of Equation (18) in (16). 
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  , 

 1,2,..., ;N p   , contributing to , are expressed in 

terms of different co–ordinates, using a Bessel functions 
addition theorem, the velocity potentials expressed in the 

qp
P
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 zr ,,    co–ordinates may be transformed to expressions in 

the reference co-ordinates  zr qq ,, . From Watson (1966) it is 

confirmed that: 
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Where denotes the m–th order modified Bessel function of 

first kind and is defined in Fig.1.  
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Using the above relations all terms of the s–th order velocity 

potential , described by Equation (16), are now expressed 

in the co–ordinate frame of the q–th body, i.e. 
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Where for the outer fluid domain, i.e. ,qq ar  dz 0  the 
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The first term in Equation (31) represents the contribution of 

the s–th order incident wave, , to the potential , 

whereas the last term describes the scattered wave field of the 
corresponding order.  
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The first term in (33) represents the isolated device wave field 
around the p body due to its own internal pressure variation, 
the second term denotes the incident wave fields on body q 
emanating from the scattered fields of the remaining devices 
considered open and the last term is the scattered wave filed 
around the q –th device. 
The corresponding expressions for the total velocity potential 
in the III and M fluid regions are: 
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and is the Neumann’s symbol: ,  nε 1ε0  2ε n , .  1n

At this point we note that the form of the selected solutions for 

the velocity potentials in each fluid domain , 

is such that the boundary conditions at the horizontal 
boundaries of each fluid region and, in addition, the radiation 
condition at infinity in the outer fluid domain are a priori 

satisfied. Moreover, the potential functions  

have been constructed in such a way that their homogeneous 
parts can be reduced to simple Fourier series at the vertical 
boundaries of adjacent fluid regions. This feature of the 
velocity potential representations facilitates essentially the 
solution procedure. The kinematic conditions at the body’s 
vertical walls, as well as the requirement for continuity of the 
potential and its radial derivative at the vertical boundaries of 
neighboring fluid domains remain to be fulfilled.   

MIIIIiqpi
P ,,,, 

MIIIIiqpi
P ,,,, 

Expressing these conditions an infinite system of linear 
equations for the determination of the unknown s–th order 

scattering coefficients, , in the fluid domain I of each 

device is obtained, can be written in follow general matrix 
form: 
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s DCFE ,
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where  qpI
PD ,

qp
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sG

 denotes a complex vector whose elements are 

related to , given by Equation (32), j,  E  is a square 

matrix its elements depend exclusively on the particular 
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geometry of the examined device and the characteristics of the 
incident wave, and   is a column matrix due to inner 

pressure in each device of the configuration. Having the 
Fourier coefficients in the outer fluid domain determined, the 

corresponding ones , needed for the series 

representations of the potential functions in the III and M fluid 
region, respectively, can be calculated as well. 

0C

III
P

sF , qpM
P

sqp F ,,

 

3 VOLUME FLOW 
The time dependent volume flow produced by the oscillating 
internal water surface in q OWC device, q=1,2,…,N, is denoted 

by    ti
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Here zu denotes the vertical velocity of the water surface, and 

the inner water surface of the q device. It proves convenient 

to decompose the total volume flow, , of the q device, same 

as for an isolated device, into two terms associated with the 

diffraction, , and the pressure–dependent radiation 

problem, , as follows:  
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where and are the corresponding radiation conductance 
and susceptance, respectively. Assuming uniform pressure 
distribution inside the chamber, it can be shown that, even 
though all m-modes terms affect the values of the diffraction 
and radiation potentials, by substituting those potentials in 
Equation (45) only the modes with  contribute to 

and , as in an isolated device [Mavrakos & Konispoliatis, 

2011].   
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Assuming that the Wells turbine is placed in a duct between the 
chamber and the outer atmosphere, of the q device, and it is 

represented by a pneumatic admittance q , then the total 
volume flow is equal to [Evans & Porter; 1996, Falnes; 2002]: 

   tPq
intQ qq     (49) 

According to [Sarmento & Falcao; 1985, Falcao 2002], for the 
Wells turbine, can be obtained: 

q
in
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V
i 0
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   (50) 

Where K is constant for a given turbine geometry (independent 
of turbine size or rotational speed), D is turbine rotor diameter, 
N is the rotational speed (radians per unit time) and a , are 

the atmospheric density and pressure.   
aP

4 WAVE FORCES 
The various forces on the q oscillating water column device can 
be calculated from the pressure distribution given by the 
linearised Bernoulli’s equation:   

tiq
q

qq tzrP  ;,,(

q

 qp
i

qp
i fF

q
in

ei
t

 



)  (51) 

Where  is the q devices’ velocity potential in each fluid 

domain I, III and M.  
The horizontal and vertical exciting forces on the device have 
been presented in Mavrakos (1996), as the diffraction problem 
for an array of moonpool bodies is the same as for a group of 
OWC devices and thus, they will be no further elaborated here. 

The hydrodynamic reaction forces and moments  acting on 

the device q in the i–th direction due to pressure in the p device 

with inner pressure  and frequency ω, can be obtained: 

qp
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p
inp 0

   

qS

q
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tiqp
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ti dSneie

0

   (52) 

Where are the generalized normal components defined by: 

 qn3,qqq nnn 21 , ,  qqqqq nnnnr 654 ,,  (53) 

and is the position vector of a point on . qr qS0

Furthermore, the complex force may be written in the 

form: 
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  (54) 

Where are the added mass and dumping coefficients, 

respectively. 

qp
ii de ,
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5 NUMERICAL RESULTS 

The calculation of the Fourier coefficients , 

, j=D,P is the most significant part of the 

numerical procedure, because they affect the accuracy of 
solution. For the present calculations, in the first and the M-th 

ring element terms were used, while for the third ring 
element . In addition, the presented results were obtained 

for five order interactions. 

I
ijmF ,

M
ijm

III
qjm

III
qjm FFF ,

*
,, ,,

20i
40q

In figure 3 an array of three identical oscillating water column 
devices placed in a row is examined , for , qq ba 2 qbd 5.7 , 

,  and  (for definitions see 

Fig.2.), in order to compare the dimensionless total vertical 
force on each body of the array with the results of Mavrakos & 

Konispoliatis (2012) work for a unit pressure head , 

, (vertical  force in the device q due to its own internal 

pressure head and hydrodynamic reaction forces in vertical 
direction due to inner pressure in the remaining bodies). The 
incident wave is propagating to the positive x–axis at zero 
angle of incidence, the origin of the Cartesian co–ordinate 
system is on the sea bed and its vertical axis directed positive 
upward coinciding with the vertical axis of the second device 
local coordinate system.  

qq bhd )2/5(

3,2,1q

qb1002312  

q
inp 0

 

 
Figure 2. Array of three identical oscillating water column 
devices placed in a row 

0,000

0,005

0,010

0,015

0,020

0,025

0,030

0,035

0,040

0,045

0,050

0,055

0,060

0,065

0,070

0,075

0,080

0 0,5 1 1,5 2 2,5 3k*α

F
z/

(π
*ρ

*g
*a

^
2*

p
in

0)

Mavrakos & Konispoliatis Present Method Body 1
Present Method Body 2 Present Method Body 3  

Figure 3. Total vertical force on each of three OWC devices 
due to a unit pressure head in each device 

 
From Fig. 3 it is obvious that due to the large inter – body 
spacing, the hydrodynamic interaction phenomena do not affect 
the values of the vertical forces which in the particular case 
coincide with their isolated bodies counterparts. Figures 4, 5 
present the hydrodynamic interaction coefficients in sway and 
heave, respectively, on the second (middle) body of a three 
OWC’s array configuration (see Fig.2) with , 

plotted against . The single body geometric characteristics 

are kept the same as previously, i.e. ,

qb162312  

qb2 qbd 5.7
qka

qa  , 

qbqhd )2/5( .  
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Figure 4. Hydrodynamic interaction coefficients in sway, , pe2
2

pd 2
2 , p=1, 2, 3, versus  qka

In figure 6 the modulus of the inner pressure for various turbine 

parameters    versus is plotted 

for an array of OWC devices placed in a row (see Fig. 2), 
for , 

Nsm
N

KD
g

a

q
T /6,3,1 5


,kaq

qbd )3/8( qq ba )3/4( , , . 

It has been assumed, that all devices are characterized by the 

same , q=1, 2, 3, value and from Equation (50) 

qq bh 2 qb)3/10012   (23 

q
Tg
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that NmPV 5
a0 3.4 . The results are tested with those from 

Mavrakos & Konispoliatis (2011) work. 

-1,20

-1,00

-0,80

-0,60

-0,40

-0,20

0,00

0,20

0,40

0,60

0,80

1,00

0,00 0,50 1,00 1,50 2,00 2,50 3,00

k*α

e_
2_

p
, 

p
=

1,
2,

3

e_2_1 e_2_2 e_2_3
 

-0,60

-0,50

-0,40

-0,30

-0,20

-0,10

0,00

0,10

0,20

0,00 0,50 1,00 1,50 2,00 2,50 3,00

k*α

d
_2

_p
, 

p
=

1,
2,

3

d_2_1 d_2_2 d_2_3
 

Figure 5. Hydrodynamic interaction coefficients in heave, , pe2
3

pd 2
3 , p=1, 2, 3, plotted against  qka
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Figure 6. Modulus of inner pressure, [ ], in each device of 
the configuration versus  

3/ mN

qka

Next the effect of the geometric arrangement and of the wave 
propagation on the internal device pressure is investigated, with 
the help of Fig. 7. The first two cases are concerned with the 
configuration shown in Fig. 2. Here, the three devices are 

placed in a row and the incident wave is propagating with 

angles of attack equal to (first case) and degrees 
(second case) with respect to the positive x – axis. The inter – 
body spacing is chosen equal to . In the third 

case, the geometric characteristics of the individual devices are 
kept the same as in figure 3, their geometrical arrangement 
though has been changed, by considering the  three devices 
placed at the corners of a triangle, where 

00 090

qb162312  

qb16132312   , and the incident wave propagating 

along the positive x–axis at zero angle (Fig. 7). The 
dimensionless modules of the inner air pressures in each of the 
devices, for the three above mentioned cases are plotted in 
Figures 8, 9, 10 by assuming the same turbine parameter 

  ,/4 5 Nsm
N

KD
g

a

q
T 


q=1, 2, 3. 

 

 
 
 
Figure 7. Array of three oscillating water column devices in 
triangular shape 

6 CONCLUSIONS 
An exact method has been presented for solving the diffraction 
and pressure radiation problems around an array of restrained 
OWC devices. The results of this analysis show the importance 
of the hydrodynamic interaction effects in evaluating the 
characteristics of such multiple – device arrangements. Both 
the hydrodynamic parameters and the characteristics of the 
turbine parameters have to be properly combined in order to 
improve the wave energy conversion. 
The method is presently being extended to floating arrays of 
OWC devices in order to include the radiation problem due the 
motion of each body. 
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