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The paper deals with the hydrodynamic analysis of an array of oscillating water column (OWC) devices
that is floating independently in finite depth waters and exposed to the action of regular surface waves.
Linearized potential flow theory is assumed. Numerical results are given from the analytical solution of
three boundary value problems, namely, the diffraction, the motion – and the pressure-dependent
radiation problems. In all cases the interaction phenomena with neighboring bodies have been taken
properly into account. First and mean second order wave forces, added masses and damping coefficients,
together with air volume flow rates and wave power efficiency from each device are parametrically
evaluated.
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1. Introduction

Renewable energy technology is steadily gaining importance in
the world energy market due to the limited nature of fossil fuel
supplies, national requirements for security of supply, as well as
political pressure toward the reduction of carbon emissions. The
ability of converting wave energy into usable energy has inspired
numerous inventors: more than 1000 patents had been registered
by 1980 (McCormick, 1980) and the number has increased since
then (Falcao, 2010). Among several classes of designs proposed for
the wave energy conversion the oscillating water column device
(OWC) has received considerable theoretical attention (Evans,
1982; Sarmento et al., 1990; Evans and Porter, 1996; Falnes, 2002;
Martins–Rivas and Mei, 2009a). A number of different designs of
such wave energy devices have been presented in the literature,
the most of them being single devices installed onshore (Falcao,
2010), whereas lately there are some designs of free floating or
moored devices in the open sea (Mavrakos and Konispoliatis,
2012).

As far as the case of an array of those devices is concerned, the
research has mostly been concentrated to restrained OWC's wave
energy converters (WEC). In this context, theoretical studies have
been presented by Falcao (2002); Nihous (2012) and Nader et al.
(2012, 2014), and experimental ones by Aubault et al. (2011) and
Bryden and Linfoot (2010). Considering the case of arrays of free-
rakos).
floating wave energy converters, the so-called WEC farms, theo-
retical studies have been developed in the literature for capturing
the hydrodynamic interaction effects among the devices. This
aspect has been covered by Babarit et al. (2010); Borgarino et al.
(2012); Babarit (2013) and Singh and Babarit (2014) in regular and
irregular wave fields. Moreover, Child and Venugopal (2010) and
Child et al. (2011) presented a numerical optimization scheme for
obtaining array layouts with the most favorable total power
absorption levels at a particular wave number and direction, while
Folley et al. (2012) made a snap-shot of the currently available
numerical modelling techniques for WEC.

The main difference between an isolated OWC device and an
array of such devices is the hydrodynamic interaction phenomena
between the array's members. Each device of the configuration
scatters waves towards the others, which in turn scatter waves
contributing to the excitation of the initial device and so on. In the
present contribution, the total wave field around each body of the
multi-body configuration is obtained by superposing the incident
wave potential and various orders of successively reflected waves
emanating from all the devices of the arrangement using the
physical idea of multiple scattering that has been introduced by
Twersky (1952) in studying the acoustic scattering by an array of
parallel cylinders. This idea was applied to free-surface body–wave
interaction problems by Ohkusu (1974) for the case of three
adjacent, floating, vertical truncated cylinders. The method was
then extended by Mavrakos and Koumoutsakos (1987) and Mav-
rakos (1991) for the solution of the diffraction and radiation pro-
blems by an array of arbitrarily shaped vertical axisymmetric
bodies with any geometrical arrangement and individual bodies'
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geometries. Mavrakos (1996) solved the diffraction problem by an
array of bottomless vertical axisymmetric bodies, with finite wall
thickness while Mavrakos and McIver (1997) compared the results
obtained by the multiple scattering formulation with the plane-
wave approximation and computed the wave forces, hydro-
dynamic coefficients and the gain q–factors of a finite array of
wave power devices.

Besides the multiple scattering approaches, direct matrix
inversion methods have been presented in the literature as well to
solve the hydrodynamic interaction problem among arrays of
bodies for which the diffraction solution is known (Kagemoto and
Yue, 1986). This method has been also used by Siddorn and Eatock
Taylor (2008) in order to elaborate an exact algebraic method for
the diffraction and independent radiation by an array of truncated
cylinders.

In the present contribution an array of multiple interacting
vertical axisymmetric oscillating water column devices is investi-
gated, exposed to the action of regular surface waves in finite
water depth. The devices have finite wall thickness and are float-
ing independently. Numerical results are given from the solution
of three boundary value problems, namely, the diffraction
problem-each body is fixed in waves, atmospheric pressure in each
OWC–, the motion-dependent radiation problem resulting from
the forced oscillations of each body in otherwise still water, also
under atmospheric conditions above each OWC, and the pressure-
dependent radiation problem resulting from an oscillating pres-
sure head acting on the inner free surface of each OWC. Particu-
larly, numerically evaluated linear exciting wave forces along with
the volume flow, the added mass and wave damping coefficients
are calculated for each freely floating device. In addition, the mean
second order loads acting on each OWC device are presented. In
view of evaluating the rigid body motions of each device, the
motion equations are solved in the frequency domain, for various
values of turbine parameters related to the pressure drop inside
each oscillating chamber. Final, the power efficiency over a range
of wave frequencies from each device of the array for various
spacing among the OWC's is being calculated.
2. Description of the hydrodynamic problem

2.1. Governing equations and single-body velocity potential
representations

We consider a group of N floating vertical axisymmetric oscil-
lating water column devices that is excited by a plane periodic
Fig. 1. Definition sketch of the
wave of amplitude H/2, frequency ω and wave number k propa-
gating in water of finite water depth d. The outer and inner radii of
each device's chamber q, q¼1, 2,…, N, are denoted by aq; bq;
respectively, whereas the distance between the bottom of the q
device and the sea bed is denoted by hq, as illustrated in Fig. 1. The
fluid is assumed non viscous and incompressible and the flow
irrotational, so that linear potential theory can be employed. A
global Cartesian co-ordinate system O–XYZ with origin on the sea
bed and its vertical axis OZ directed positive upwards is used.
Moreover, N local cylindrical co-ordinate systems rq;θq; zq

� �
, q¼1,

2,…, N are defined with origins on the sea bottom and their
vertical axes pointing upwards and coinciding with the vertical
axis of symmetry of the q device.

The fluid flow around each of the q¼1,2,…,N device can be
described by the potential function:

Φq rq; θq; z; t
� �¼ Re ϕq rq; θq; z

� �
Ue� iωt

n o
ð2:1Þ

Following Falnes and McIver (1985) the spatial function ϕq can
be decomposed, on the basis of linear modeling, as:

ϕq ¼ϕq
0þϕq

7þ
XN
p ¼ 1

X6
j ¼ 1

_ξ
p
j0 Uϕ

qp
j þ

XN
p ¼ 1

ppin0 Uϕ
qp
P ð2:2Þ

Here, ϕq
0 is the velocity potential of the undisturbed incident

harmonic wave; ϕq
7 is the scattered potential around the q device,

when it is considered fixed in waves with the duct open to the
atmosphere, so that the pressure in the chamber is equal to the
atmospheric one; ϕqp

j is the motion-dependent radiation potential
around the body q resulting from the forced oscillation of the p

body in j direction with unit velocity amplitude, _ξ
p
j0, (j¼1, 2,…,6),

the air chambers of both p and q devices being considered open to
the atmosphere.

It holds _ξ
p
j ¼ Re _ξ

p
j0 Ue

� iωt
n o

¼ Re � iωξpj0 Ue
� iωt

n o
and the sub-

script j stands for surge (j¼1), sway (j¼2), heave (j¼3), roll (j¼4),
pitch (j¼5) and yaw (j¼6) modes of motions, respectively.
Moreover, ϕqp

P is the pressure-dependent radiation potential
around the q body when it is considered fixed in the wave field
and open to the atmosphere due to unit time harmonic oscillating
pressure head, Pp

in ¼ Re ppin0 Ue
� iωt

� �
, in the chamber of the p device

which is considered fixed in otherwise calm water.
The potentials ϕq

j (j¼0, 7; q¼1, 2, …, N), ϕqp
j (j¼1, …, 6; p, q¼1,

2,…, N) and ϕqp
P (p, q¼1, 2,…, N) are solutions of Laplace's equation

in the entire fluid domain and satisfy the zero normal velocity on
the sea bed z¼ 0ð Þ and the following boundary conditions on the
q OWC device of the array.
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outer and inner free sea surface z¼ dð Þ of each body:

ω2ϕq
j �g

∂ϕq
j

∂z
¼ 0 for rqZaq; 0rrqrbq; j¼ 0;7 ð2:3Þ

ω2ϕqp
j �g

∂ϕqp
j

∂z
¼ 0 for rqZaq; 0rrqrbq; j¼ 1;2; :::;6 ð2:4Þ

ω2ϕqp
P �g

∂ϕqp
P

∂z
¼

0 for rqZaq
�δq;piωρ for 0rrqrbq

( )
ð2:5Þ

Furthermore, the potentials have to fulfill following kinematic
conditions on the mean body's wetted surface:

∂ϕq
7

∂ n!q ¼ � ∂ϕq
0

∂ n!q ð2:6Þ

∂ϕqp
P

∂ n!q ¼ 0 ð2:7Þ

∂ϕqp
j

∂ n!q ¼ δq;pn
p
j ; j� 1; :::;6 ð2:8Þ

Here ∂ð Þ=∂ n!q
denotes the derivative in the direction of the

outward unit normal vector n!q
, to the mean wetted surface Sq0 on

the q–th body, and np
j ; are its generalized components defined as

n!p ¼ ðnp
1;n

p
2;n

p
3Þ and r!p � n!p ¼ ðnp

4;n
p
5;n

p
6Þ, where r!p

is the
position vector with respect to the origin of the coordinate system.
Finally, a radiation condition must be imposed which states that
propagating disturbances must be outgoing.

The velocity potential of the undisturbed incident wave,ϕq
0,

propagating at angle β, (Fig. 1), with respect to the positive x–axis
can be expressed in the cylindrical co-ordinate frame of the q-th
body as follows (Mavrakos and Koumoutsakos, 1987):

ϕq
0ðrq; θq; zÞ ¼ � iω

H
2

X1
m ¼ �1

imΨ q
0;mðrq; zÞUeimθq ð2:9Þ

where

1
d
Ψ q

0;mðrq; zÞ ¼ eikℓoq cos ðθoq �βÞ Z0ðzÞ
dUZ0

0ðdÞ
JmðkrqÞUe� imβ ð2:10Þ

The symbols used above are defined in Fig. 1. Here Jm is the m-
th order Bessel function of first kind and Z0ðzÞ is defined by:

Z0ðzÞ ¼
1
2
U 1þsinhð2kdÞ

2kd

� �� ��1=2

U coshðkzÞ ð2:11Þ

with Z0
0ðdÞ being its derivative at z¼ d: Frequency ω and wave

number k are related by the dispersion equation.
In accordance to (2.9), the diffraction, i.e.ϕq

D ¼ ϕq
0þϕq

7, the
motion–, and pressure-dependent radiation potentials around the
q device, when it is considered alone in the wave field, can be
expressed in its own cylindrical co-ordinate system rq;θq; z

� �
as

follows:

ϕq
Dðrq; θq; zÞ ¼ � iω

H
2

X1
m ¼ �1

imΨ q
D;mðrq; zÞUeimθq ð2:12Þ

ϕq
j ðrq;θq; zÞ ¼ � iω

X1
m ¼ �1

Ψ q
j;mðrq; zÞUeimθq ð2:13Þ

ϕq
Pðrq;θq; zÞ ¼

1
iωρ

X1
m ¼ �1

Ψ q
P;mðrq; zÞUeimθq ð2:14Þ

here ρ is the water density. The unknown potential functions
Ψ q

D;m,Ψ
q
j;m, and Ψ q

P;m involved in Eqs. (2.12)–(2.14) can be estab-
lished through the method of matched axisymmetric eigenfunc-
tion expansions. In doing so, the flow field around the device q is
subdivided in coaxial ring-shaped fluid regions, categorized by the
numerals I, III and M (Fig. 1). In each of those regions, different
series expansions of the velocity potentials Ψ k;q

D;m,Ψ
k;q
j;m, and Ψ k;q

P;m

(k¼ I, III, and M) can be made.
These are solutions of the Laplace equation in each fluid region

and are selected in such a way that the kinematic boundary con-
dition at the horizontal walls of the cylindrical OWC device, the
linearized condition on the free surface, the kinematic condition
on the sea bottom and the radiation condition at infinity are a
priori satisfied. The various potential solutions are then matched
by continuity requirements of the hydrodynamic pressure and
radial velocity along the vertical boundaries of adjacent fluid
regions, as well as by fulfilling the kinematic conditions at the
vertical walls of the body. This procedure delivers the linear sys-
tems of equations for the determination of the unknown coeffi-
cients needed for the series representations of the velocity
potential in each fluid region. The method has been extensively
described in the past (see for example the works by Miles and
Gilbert (1968), Garrett (1971), Black et al. (1971), Yeung (1981),
Mei (1983) as far as a circular dock is concerned; by Mavrakos
(1985, 1988) for bottomless cylinders; by Mavrakos and Konispo-
liatis (2012) for single OWC's devices with finite wall thickness and
by Kokkinowrachos et al. (1987) for the hydrodynamic analysis of
arbitrary shaped vertical bodies of revolution). It is therefore no
further elaborated here.

In the outer fluid domain I of the body q, i.e. for rqZaq;
0rzrd, when the body q is considered alone in the wave field,
the appropriate series representations of the potential functions
Ψ I;q

j;m involved in (2.12)–(2.14) for the diffraction (j¼D), the motion-
radiation (j¼1, 3, and 5) and the pressure-radiation (j¼P) pro-
blems are:

1
δj
Ψ I;q

j;m rq; z
� �¼ gI;qj;m rq; z

� �þ X1
n ¼ 0

FI;qj;mn
KmðanrqÞ
KmðanaqÞ

ZnðzÞ ð2:15Þ

where

gI;qD;mðrq; zÞ ¼ Jm krq
� �� Jm kaq

� �
Hm kaq
� �Hm krq

� �( )
Z0ðzÞ
d:Z0

0ðdÞ

gI;q1;1ðrq; zÞ ¼ gI;q3;0ðrq; zÞ ¼ gI;q5;1ðrq; zÞ ¼ gI;qP;0ðrq; zÞ ¼ 0

δD ¼ δ1 ¼ δ3 ¼ d; δ5 ¼ d2; δP ¼ 1 ð2:16Þ

The potential function in (2.15) has been formulated in such a
way that at the vertical exterior boundary of the body q,rq ¼ aq, the
function Ψ I;q

D;m can be reduced to simple Fourier series. This facil-
itates the formulation and the numerical implementation of the
matching condition for the diffraction velocity potential in rq ¼ aq.
For this reason the second term in the expression gI;qD;mðrq; zÞ has
been introduced as in Garret (1971), Kokkinowrachos et al. (1986),
Mavrakos (1985).

In (2.15) and (2.16), Hm and Km is the m-th order Hankel
function of the first kind and the modified Bessel function of the
second type, respectively, whereas Zn(z) are orthonormal func-
tions in [0, d] defined by (2.11) for n¼0 and:

ZnðzÞ ¼
1
2
U 1þ sin ð2andÞ

2and

� �� ��1=2

U cos ðanzÞ; na0 ð2:17Þ

an being the roots of the transcendental equation

ω2

g
þan tan andð Þ ¼ 0 ð2:18Þ

which possesses one imaginary, an ¼ � ik, k40, and infinite
number of real roots. Substituting the value of a0 in Eqs. (2.17) and
(2.18), Eq. (2.11) and the dispersion equation can directly be
obtained. Moreover, since for a0 ¼ � ik (Abramowitz and Stegun,
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1970):

Km � ikrp
� �¼ π

2
imþ1Hm krp

� � ð2:19Þ

the first term in the series expansion in (2.15) behaves as outgoing
wave at large r satisfying the radiation condition. For nZ1, the
remaining terms in (2.15) represent evanescent waves exponen-
tially decaying at large r.

At this point, it should be mentioned that the motion-and
pressure-radiation potentials ϕq

j and ϕq
P , see Eqs. (2.13) and (2.14)

respectively, around the isolated body q involve a single value of m
depending on the mode of motion and the problem considered. So,
m¼0 stands for the symmetric modes of motion, i.e. for the heave-
and pressure-radiation problems (Mavrakos, 1991; Mavrakos and
Konispoliatis, 2012), while m¼71 refers to the antisymmetric
motion-radiation problems (surge, sway, roll and pitch). However,
the series representations in the form of Eqs. (2.13) and (2.14) have
been preferred at this stage of the analysis in order to attain
similar representations with the ones of the total potentials, ϕqp

j

and ϕqp
P , induced around any body q of the multi-body config-

uration due to the oscillation of body p in the j-th direction in
otherwise calm water (motion-dependent radiation potential) or
due to the time harmonic oscillating pressure head inside the air
chamber of body p (pressure-dependent radiation potential)
respectively. These potentials, expressed in the q–th body's
cylindrical coordinate system ðrq;θq; zÞ, include components for all
values of m accounting for interference effects.

2.2. Multiple scattering approach for the velocity potential repre-
sentation of interacting OWC's devices

In accordance to Eqs. (2.13) and (2.14) the afore mentioned
potentials, ϕqp

j ;(j¼1, …, 6, P) in a multi-body configuration can be
expressed in the q–th body's cylindrical coordinate system, as:

ϕqp
j ðrq; θq; zÞ ¼ � iω

X1
m ¼ �1

Ψ qp
j;mðrq; zÞUeimθq ð2:20Þ

ϕqp
P ðrq; θq; zÞ ¼

1
iωρ

X1
m ¼ �1

Ψ qp
P;mðrq; zÞUeimθq ð2:21Þ

Here, the functions Ψ qp
j;mðrq; zÞ, (j¼1, 2,…, 6, P) are the principal

unknown of the problem. In order to express the potentials, ϕqp
j ; in

the form of Eqs. (2.20) and (2.21), use is made of the multiple
scattering approach (Twersky, 1952; Okhusu, 1974). The method
accounts for the hydrodynamic interaction phenomena among the
devices in the array by superposing to the isolated body potential
flow solution various orders of scattered/radiated wave fields
emanating from the rest of the devices. The implementation of the
multiple scattering formulation for the solution of the diffraction
and the motion-dependent radiation problems around arbitrarily
shaped, floating or/and submerged vertical axisymmetric bodies
has been extensively reported in the literature (see Mavrakos and
Koumoutsakos, 1987; Mavrakos, 1991) and thus, it will be no fur-
ther elaborated here.

In this section, the implementation of the physical idea of
multiple scattering for solving the pressure-depended radiation
problem for an array of hydrodynamically interacting OWC's
devices will be presented. In doing this, we initially consider the
device p (p¼1,2,…,N) of the arrangement subjected to time har-
monic oscillating air chamber pressure head with unit amplitude,
the rest of the devices, q¼1, 2, …, N; qap, being considered
restrained in the wave field and open to the atmosphere. Due to
the existence of the inner pressure, the body p radiates its “zero
order of radiation”, 0ϕpp

P ; given by Equations (2.14)–(2.16), such
that the latter is the solution of the non-homogeneous pressure-
dependent radiation problem expressed in the cylindrical
coordinate system of body p, see Eq. (2.5). Thus:

XN
p ¼ 1

0ϕpp
P

is the total velocity potential radiated by the entire multi-device
configuration in the absence of interaction phenomena. The
radiation potential 0ϕpp

P ; represents a “first order of incident
wave”, 1ϕqp

0;P ; for each of the remaining devices of the arrangement,
(q¼1,2,…,N; q a p), which have been considered restrained in the
waves and open to the atmosphere, in response to which they
radiate a “first order of scattering”, 1ϕqp

7;P ;(q¼1,2,…,N; q a p). Here
the subscript 0, denotes incident wave on the device q, emanating
from body p due to its own unit pressure head (i.e. superscript pp),
while the subscript P, denotes the pressure radiation problem. The
subscript 7 denotes the scattered waves from device q in accor-
dance to the notation used in Eq. (2.2). The corresponding total
“first order potential” around the device q due to the unit inner air
pressure head in device p, is equal to:

1ϕqp
P ¼ 1ϕqp

7;Pþ1ϕqp
0;P ; qap

The above “first order potential” has to satisfy homogeneous
boundary conditions on the restrained device q (Eq. (2.7)), with
atmospheric inner pressure, i.e.:

ω2 U1ϕqp
P �g∂1

ϕqp
P

∂z
¼

0 for rqZaq
0 for 0rrqrbq

( )
ð2:22Þ

Especially for the device p, with unit inner air pressure head,
the “first order” of incident and scattered wave potentials, denoted
by 1ϕpp

0;P ;
1ϕpp

7;P respectively, do not exist in the context of the pre-
sent formulation. Indeed, since the remaining devices of the
arrangement are considered restrained (Eq. (2.7)) in the wave field
and open to the atmosphere when body p is subjected to inner
pressure head, they do not radiate any potential of “zero order” at
all, which would contribute to the “first order of incident wave”,
on the p device, i.e. 0ϕpq

P ¼ 1ϕpq
0;P ¼ 0 for q¼1, 2, …, N, qap.

Next, in response to all the waves of the “first order of scat-
tering” from the remaining devices, which can be considered as a
“second order of incident wave” 2ϕqp

0;P ; for the device q (q¼1,2,…,
N), i.e.

2ϕqp
0;P ¼

XN
l ¼ 1

1�δl;q
� �

U1φlp
7;P ð2:23Þ

the q device radiates a wave of “second order of scattering”,
denoted by 2ϕqp

7;P ; such that the total “second order potential”,
2ϕqp

P ¼ 2ϕqp
7;Pþ2ϕqp

0;P ; satisfies the homogeneous boundary condi-
tions on the restrained body in the q-th coordinate system and
with atmospheric pressure head in its air chamber (see Eqs. (2.22)
and (2.7)). The same homogeneous conditions remain valid for all
the higher order interaction potentials sϕqp

P ; sZ1, even in the case
when the device q coincides with the device p having unit inner
pressure head in its air chamber. Indeed, as the non-homogeneous
free surface condition in the device p� q has been already fulfilled
through the solution of zero order, 0ϕpp

P ; i.e. ω2 U0ϕpp
P �

g∂0 φpp
P
∂z ¼

0 for rqZaq
� iω

ρ for 0rrqrbq

( )
(see also Eq. (2.5)), it is suffi-

cient to require that for all the potentials of higher order of
interaction sϕpp

P ; sZ1; it holds:

ω2 U sϕpp
P �g∂s

ϕpp
P

∂z
¼

0 for rqZaq
0 for 0rrqrbq

( )
ð2:24Þ

Following the same procedure, we produce the sth order of
interaction for any device q (q¼1,2,…,N) of the arrangement. Thus,
the corresponding sth order incident, sϕqp

0;P , scattered,
sϕqp

7;P and
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total wave potential, will be:

sϕqp
0;P ¼

XN
l ¼ 1

1�δl;q
� �

U s�1ϕlp
7;P ; forZ1; sϕqp

P ¼ sϕqp
7;Pþ sϕqp

0;P ð2:25Þ

where sϕqp
P ; for sZ1, satisfies the boundary condition on the

restrained device with atmospheric inner pressure, as mentioned
previously (see Eqs. (2.22) and (2.7)). Assuming that s is
approaching to infinity and summing over the various interaction
orders, the total radiated wave scattered from and incident to the q
device, denoted by ϕqp

7;P ;ϕ
qp
0;P ; respectively, are:

ϕqp
7;Pðrq;θq; zÞ ¼ δq;p0ϕ

pp
P ðrp;θp; zÞþ

X1
s ¼ 1

sϕqp
7;Pðrq;θq; zÞ ð2:26Þ

ϕqp
0;Pðrq;θq; zÞ ¼

X1
s ¼ 1

sϕqp
0;Pðrq;θq; zÞ ¼

X1
s ¼ 1

XN
l ¼ 1

ð1�δl;qÞU s�1ϕlp
7;P

ð2:27Þ
The total wave field ϕqp

P , induced around any device q of the
multi–component configuration due to the unit inner air pressure
in device p, can be written as:

ϕqp
P ¼ϕqp

0;Pþϕqp
7;P ¼ δq;p0ϕ

pp
P þ

X1
s ¼ 1

sϕqp
7;Pþ sϕqp

0;P � ¼ δq;p0ϕ
pp
P

h

þ
X1
s ¼ 1

sϕqp
7;Pþ

XN
l ¼ 1

ð1�δlqÞU s�1ϕlp
7;P � ¼ δq;p0ϕ

pp
P þ

X1
s ¼ 1

sϕqp
P

"
ð2:28Þ

The velocity potential ϕqp
P will satisfy the imposed boundary

conditions in the coordinate frame of the q device (q¼1,2,…,N).
Indeed, in cases where the device q coincides with the device p
with unit inner air pressure, the appropriate non-homogeneous
free surface boundary condition inside the device p, see Eq. (2.5), is
satisfied by the first term on the rhs of Eq. (2.28) 0ϕpp

P . Each of the
remaining terms, sϕqp

P ; involved in the infinite series in (2.28), are
selected so that they fulfill homogeneous free surface boundary
conditions inside and outside any device of the configuration (see
Eqs. (2.22) and (2.24)), the latter being considered restrained in
the waves and open to the atmosphere, and thus the terms sϕqp

P do
not affect the validity of the imposed boundary condition for the
device p with unit inner pressure. On the other hand, if the device
q is open to the atmosphere, the homogeneous free-surface
boundary condition (Eq. (2.5)) will also be satisfied by ϕqp

P since-
according to the preceding analysis–all sϕqp

P ;(s¼1,2,…) satisfy the
same homogeneous condition, see Eqs. (2.22) and (2.24), as well
and 0ϕpp

P will be absent in this case. In this way, the problem is
reduced to the determination of the unknown potentials sϕqp

P ;

which through Eq. (2.25) are expressed as a superposition of the
sth order wave scattered by the device q, sϕqp

7;P , and the (s�1)th

order waves scattered by the remaining devices s�1ϕlp
7;P ; l¼

1;2; :::;N; laq:
Each order of scattered wave potential sϕqp

7;P , s Z1, contributing
to sϕqp

P ;(q¼1,2,…,N) can be described in terms of cylindrical wave
functions as (Konispoliatis and Mavrakos, 2013):

sϕqp
7;P rq;θq; z
� �¼ 1

iωρ

X1
m ¼ �1

sΨ qp
7;P;mðrq; zÞUeimθq ð2:29Þ

where for the outer fluid domain of the device q, i.e.
rqZaq;0rzrd :

sΨ qp
7;P;m rq; z

� �¼ X1
j ¼ 0

sFI;qpP;m;j

KmðajrqÞ
KmðajaqÞ

UZjðzÞ ð2:30Þ

All functions and symbols appearing in (2.30) have been
introduced previously in Eqs. (2.15)–(2.19). The sth order scatter-
ing coefficients sFI;qpP;m;j; are obtained through the solution of the
respective order of the diffraction problem around the device q
with inner atmospheric pressure in the qth coordinate system.
Thus the potential sϕqp
P ; around the device q can be found by

substitution of Eq. (2.29) in Eq. (2.25).
At this point, it should be mentioned that each of the scattered

waves s�1ϕlp
7;P ; l¼ 1;2; :::;N; contributing to sϕqp

P ; are expressed in
terms of different coordinates. Using a Bessel function addition
theorem, all velocity potentials expressed in the ðrl;θl; zÞ coordi-
nates may be transformed to expressions in the reference coor-
dinates of the device q (Watson, 1966):

KvðajrℓÞUeivθℓ ¼
X1

m ¼ �1
ð�1Þm UKv�mðajℓℓqÞU ImðajrqÞUeiðv�mÞθℓq Ueimθq ; f or rℓoℓℓq

ð2:31Þ
here Im denotes the mth order modified Bessel function of

first kind.
Using the relations Imð� ikrqÞ ¼ ð� iÞm U JmðkrqÞ, Kmð� ikrqÞ ¼ π=2

imþ1 UHmðkrqÞ (Abramowitz and Stegun, 1970), for the imaginary
root aj ¼ � ik; the Eq. (2.31) can be written as:

HvðkrℓÞUeivθℓ ¼
X1

m ¼ �1
Hv�mðkℓℓqÞU JmðkrqÞUeiðv�mÞθℓq Ueimθq ð2:32Þ

Using the expressions (2.31), (2.32), all the terms of the sth
order total wave field, given by Eq. (2.25), can be expressed in the
coordinate frame of the q device, in all the fluid domains (k¼ I,III
and M, see Fig. 1), i.e.

sϕqp
P ðrq;θq; zÞ ¼

1
iωρ

X1
m ¼ �1

sΨ k;qp
P;m ðrq; zÞUeimθq ; k¼ I; III;M ð2:33Þ

Here the function sΨ k;qp
P;m for the outer fluid domain is given by:

sΨ I;qp
P;mðrq; zÞ ¼

X1
j ¼ 0

�
sGI;qp

P;m;j

ImðajrqÞ
ImðajaqÞ

þ sFI;qpP;m;j

KmðajrqÞ
KmðajaqÞ

�
UZjðzÞ ð2:34Þ

where

sGI;qp
P;m;j ¼

XN
i ¼ 1

ð1�δℓ;qÞ
X1

v ¼ �1
imþvKv�mðajℓqpÞImðajaqÞ

KvðajaqÞ

�
s�1FI;ℓpP;v;j

	
Ueiðv�mÞθℓq

ð2:35Þ
Next, with the help of Eqs. (2.34) and (2.35), the total wave

field, given by Eq. (2.28), can be expressed in the form of Eq. (2.21)
where:

Ψ I;qp
P;mðrq; zÞ ¼ δq;pΨ

I;p
P;mðrp; zÞþ

X1
j ¼ 0

GI;qp
P;m;j

ImðajrqÞ
ImðajaqÞ

þFI;qpP;m;j

KmðajrqÞ
KmðajaqÞ

� �
UZjðzÞ

ð2:36Þ

GI;qp
P;m;j ¼

X1
s ¼ 1

sGI;qp
P;m;j; F

I;qp
P;m;j ¼

X1
s ¼ 1

sFI;qpP;m;j; and Ψ I;p
P;mðrp; zÞ ¼

X1
j ¼ 0

FIP;m;j
KmðajrpÞ
KmðajapÞ

UZjðzÞ

ð2:37Þ
The corresponding expressions for the total velocity potential

in the III and M fluid domain are given in the Appendix A.
3. Determination of the Fourier coefficients for the pressure-
radiation problem

The condition for continuity of the potential function ϕℓ
P(ℓ¼ qp;

p, q¼1,…,N) at rq ¼ bq; rq ¼ aq; and its radial derivative are
expressed by:

Ψ III;ℓ
P;m ðbq; zÞ ¼ΨM;ℓ

P;m ðbq; zÞ ð3:1Þ

∂Ψ III;ℓ
P;m

∂r







r ¼ bq

¼ ∂ΨM;ℓ
P;m

∂r







r ¼ bq

ð3:2Þ

Ψ I;ℓ
P;mðaq; zÞ ¼Ψ III;ℓ

P;m ðaq; zÞ ð3:3Þ
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∂Ψ I;ℓ
P;m

∂r







r ¼ aq

¼ ∂Ψ III;ℓ
P;m

∂r







r ¼ aq

ð3:4Þ

Multiplying both sides of Eqs. (3.1) and (3.3) by ð1=hqÞ cos ðsπz
=hqÞ and integrating over their region of validity,½0;hq�, the fol-
lowing set of equations can be obtained:

F�III;qpP;m;n ¼ δq;pQ�
P;0;nþ

X1
i ¼ 0

Ln;iF
M;qp
P;m;i f or 0rzrhq; r¼ bq ð3:5Þ

FIII;qpP;m;n ¼
X1
i ¼ 0

FI;qpP;m;iLn;i f or 0rzrhq; r¼ aq ð3:6Þ

where Ln;i and Q�
p;0;n are defined in Appendix B.

The condition for the continuity of the radial derivative of the
potential at rq ¼ bq; rq ¼ aq; as expressed by Eqs. (3.2), (3.4),
respectively, as well as the kinematic condition on the vertical
boundaries of the q device, as described by Eq. (2.8) must be ful-
filled too. Multiplying both sides of Eqs. (3.2), (3.4), (2.8) with the
weight function ð1=dÞZμðzÞ, integrating over the region of their
validity, that is 0;hq

� �
and hq; d

� �
, respectively, and adding the

resulting expressions, the following set of equations is obtained:

X1
i ¼ 0

FM;qp
P;m;iA

M
m;i ¼

hq
d

X1
n ¼ 0

εnLn;i DIII;qp
m;n FIII;qpP;m;nþD�III;qp

m;n F�III;qpP;m;n


 �
; f or r¼ bq

ð3:7Þ

X1
i ¼ 0

FI;qpP;m;iA
I
m;iþDI

m;i


 �
δi;μ ¼

hq

d

X1
n ¼ 0

εnLn;i AIII;qp
m;n FIII;qpP;m;nþA� III;qp

m;n F�III;qpP;m;n


 �
; f or r ¼ aq

ð3:8Þ

where AM
m;i;D

III;qp
m;n ;D�III;qp

m;n ;AI
m;i,A

III;qp
m;n ;A�III;qp

m;n and DI
m;i are defined in

Appendix B and εn is the Neumann's symbol defined as ε0 ¼ 1; for
n¼0; otherwise εn ¼ 2.

For the numerical implementation of the method, series (2.36),
(A1) and (A3) expressing the potential around the q device in I, III,
M fluid region will be truncated after Q, M, N terms, respectively.

The substitution of Eq. (3.5) into Eq. (3.7) will provide the
unknown Fourier coefficients in the M fluid domain in relation
with the Fourier coefficients in the III fluid domain, in the fol-
lowing matrix form, that is:

FM;qp
P;m;i

n o
¼ hq

d
Gqp
i;i

h i�1
U LM;III

i;n

h i
U εn½ �U DIII;qp

m;n

h i
U FIII;qpP;m;n

n o

þhq

d
Gqp
i;i

h i�1
U LM;III

i;n

h i
U εn½ �U D� III;qp

m;n

h i
U Q�

P;0;n

n o
ð3:9Þ

where Gqp
i;i

h i
, is a Ν�N square matrix equal to:

Gqp
i;i

h i
¼ AM

m;i

h i
�hq

d
LM;III
i;n

h i
U εn½ �U D� III;qp

m;n

h i
U LIII;Mn;i

h i
ð3:10Þ

Here, FM;qp
P;m;i

n o
, FIII;qpP;m;n

n o
are both complex vectors, the elements of

which are the unknown Fourier coefficients in the M and III fluid
domain, respectively around the q device, AM

m;i

h i
is a (N�N)

diagonal matrix given by (B5), LM;III
i;n

h i
is a (N�M) matrix given by

(B1)–(B3), εn½ � is a (M�M) diagonal matrix containing the Neu-
mann's symbol, DIII;qp

m;n

h i
and D�III;qp

m;n

h i
are (M�M) diagonal matri-

ces defined by Eq. (B7) in the Appendix B and Q �
P;0;n

n o
is a column

vector (M�1) defined by Eq. (B4) in Appendix B too.
Substituting Eq. (3.9) into Eq. (3.5) the Fourier coefficients in

the III fluid domain are connected with the bellow relation:

F�III;qpP;m;n

n o
¼ hq

d
LIII;Mn;i

h i
U Gqp

i;i

h i�1
U LM;III

i;n

h i
U εn½ �U DIII;qp

m;n

h i
U FIII;qpP;m;n

n o
þ I½ �þhq
d

LIII;Mn;i

h i
U Gqp

i;i

h i�1
U LM;III

i;n

h i
U εn½ �U D� III;qp

m;n

h i� 	
Q�

P;0;n

n o
ð3:11Þ

where I½ � is the unit matrix.
Finally, the substitution of the Eq. (3.6) into Eq. (3.8) will pro-

vide the unknown Fourier coefficients in the I fluid domain, in the
following matrix form:

Ei;i
� �

U FI;qpP;m;i

n o
¼ Bf g ð3:12Þ

where

Bf g ¼ DI
m;i

h i
�hq

d
LI;IIIi;n

h i
U εn½ �U A�III;qp

m;n

h i
þhq

d
A�III;qp
m;n

h i
U LIII;Mn;i

h i
U Gi;i
� ��1

�

U LM;III
i;n

h i
U εn½ �U D�III;qp

m;n

h i�
U Q�

P;0;n

n o
ð3:13Þ

Ei;i
� �¼ hq

d
LI;IIIi;n

h i
U εn½ �U AIII;qp

m;n

h i
þhq

d
A�III;qp
m;n

h i
U LIII;Mn;i

h i
U Gi;i
� ��1

��

U LM;III
i;n

h i
U εn½ �U DIII;qp

m;n

h i		
U LIII;In;i

h i
� AI

m;i

h i
ð3:14Þ

Here AIII;qp
m;n

h i
and A�III;qp

m;n

h i
are (M�M) diagonal matrices defined

by Eq. (B8), AI
m;i

h i
and DI

m;i

h i
are (Q�Q) diagonal matrices given by

(B6) and (B9), respectively in Appendix B.
Having the system of Eqs. (3.9), (3.11) and (3.12) solved the

Fourier coefficients for the pressure-dependent radiation problem
for the device q of the array, in all fluid domains can be
determined.
4. Volume flow

The water oscillation inside each device's chamber pushes the
dry air above the free surface through a Wells turbine. The volume
flow produced by the oscillating internal water surface in the q
device (q¼1,2,…,N) is denoted by QqðtÞ ¼ Re qq Ue� iωt

� �
where:

qq ¼∬Sqi
uq
zdS

q
i ¼∬Sqi

uq
z ðrq; θq; zÞrqdrqdθq ¼∬Sqi

∂ϕq

∂z
rqdrqdθq ð4:1Þ

here uq
z denotes the vertical velocity of the water free surface in

the q device and Sqi the cross-sectional area of the inner water
surface inside the q device.

Since the spatial function ϕq was decomposed into three terms,
see Eq. (2.2), it proves convenient to follow the same procedure
and decompose the volume flow qq; in the q device into three
terms associated with the diffraction qqD, the motion-dependent,qqR;
and the pressure-dependent, qqP ; radiation problem, as follows
(Falnes and McIver, 1985):

qq ¼ qqDþqqRþ
XN
p ¼ 1

ppin0 Uq
qp
p ð4:2Þ

We shall call the complex quantity qqpp the radiation admit-
tance, as introduced first by Evans (1982) where:

qqpp ¼ �gqpp þ if qpp ð4:3Þ
Here gqpp ; f qpp are respectively, the radiation conductance and the

radiation susceptance. Assuming uniform pressure distribution
inside the chamber, same as for an isolated device (Mavrakos and
Konispoliatis, 2012), only the pumping mode for m¼0 affects the
volumetric oscillations in evaluating the qqpp . Moreover, by sub-
stituting the diffraction potential around the q device after using
the multiple scattering approach (Mavrakos, 1996) into Eq. (4.1) it
can be shown that only modes with m¼0 contribute to qqD. Finally,
the volume flow rate due to the motion-dependent radiation
problem can be expressed on the basis of the relative vertical
displacement between the internal free surface elevation and the
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motions of the q device, i.e. (Falnes and McIver, 1985)

qqR ¼
XN
p ¼ 1

X6
j ¼ 1

_ξ
p
j0q

qp
3;j� _ξ

q
30S

q
i ð4:4Þ

here qqp3;j denotes the volume flow into the chamber of the q
device due to the motion-dependent radiation problem, originat-
ing from the motion of the p device in the j direction. These
complex coefficients represent the hydrodynamic coupling
between the oscillating OWC devices and the oscillating pressure
distributions (Falnes and McIver, 1985). As in an isolated device
(Mavrakos and Konispoliatis, 2012) only the vertical displacement
of the q device of the array contribute to its volume flow. In
addition, the motions in 6 degrees of freedom of the p device of
the array affect the volume of air in q devices' chamber. Thus all
6 motions/rotations of the N devices contribute to the volume flow
rate of q device.

The Eq. (4.2) for all the N devices of the arrangement can be
written in the following matrix form, that is:

qN
� �¼ qND

� �þ qNj
h i

U _ξ
N
j0

� �
þ qNp
h i

U pNin0
� � ð4:5Þ

where qN
� �

, qND
� �

are column matrices (N�1) containing the total
volume flows and the volume flows associated with the diffraction
problem, respectively, in all the devices; qNj

h i
is a (N�6N) matrix

containing the volume flows in all the devices due to the forced
oscillation of each device with unit velocity amplitude (motion-
dependent radiation problem); qNP

� �
is a (N�N) square matrix

containing the volume flows in all the devices due to pressure-

dependent radiation problem; _ξ
N
j0

� �
is a column matrix (6N�1)

containing the velocities in the 6 degrees of freedom of all the
devices of the configuration; and pNin0

� �
is a column matrix (N�1)

containing the values of the inner air pressure in each device of
the array.

A Wells turbine is assumed to be placed in each devices' duct
between the chamber and the outer atmosphere since it rotates in
one direction in spite the direction of the air flow. For simplicity,
we represent the turbine in the device q by a pneumatic complex
admittance Λq. The total volume flow,qq, in the q device is pro-
portional to the chamber air pressure (Evans and Porter, 1996;
Falnes, 2002):

qq ¼Λq Upqin0 ð4:6Þ
Assuming isentropy so that variations of air density and pres-

sure are proportional to each other with c2air ¼ dpqin=dρair ; cair being
the sound velocity in air, the pneumatic complex admittance Λq is
equal to (Sarmento and Falcao, 1985):

Λq ¼ KD
Nρ0

air

� iω
Vq
0

c2airρ
0
air

ð4:7Þ

here N is the rotational speed of turbine blades, D the outer
diameter of turbine rotor, ρ0

air the static air density and Vq
0 the q

device's air chamber volume. The empirical coefficient K depends
on the design, the setup and the number of turbines.

The real part of Λq is related to the pressure drop through the
turbine; whereas the imaginary part of Λq represents the effect of
the air compressibility inside the chamber of each OWC device,
thus it is negligible as long as the effect of air compressibility is
disregarded. As shown by Sarmento and Falcao (1985) and sub-
sequently by Martins–Rivas and Mei (2009a, 2009b) and Gomes
et al. (2012) air compressibility can have a non-negligible effect on
the power extraction of an OWC device and create a time lag
between the variation of the volume flow and the variation of the
inner air pressure thus it should not be neglected in full scale OWC
projects. For the sake of validation of our numerical results (see
Section 10) with those of other researchers, the air compressibility
is neglected in the present study, and thus, the pneumatic
admittance Λq is considered to be real number.
5. Wave forces

The various forces on each device q of an array of N OWC
devices can be calculated from the pressure distribution given by
the linearized Bernoulli's equation:

Pðrq; θq; z; tÞ ¼ �ρ
∂Φq

∂t
¼ � iωρϕq Ue� iωt ð5:1Þ

where ϕq is the velocity potential of the device q in each fluid
domain.

The first order horizontal exciting forces acting on the q device
can be calculated by integrating the hydrodynamic pressure on the
external and the internal device's vertical walls, i.e.

f qx ¼ f qxOut � f qxIn ¼ � iωρaq
Z z ¼ d

z ¼ hq

Z θ ¼ 2π

0
ϕI;q cos θqdθqdz

þ iωρbq
Z z ¼ d

z ¼ hq

Z θ ¼ 2π

0
ϕM;q cos θqdθqdz ð5:2Þ

f qy ¼ f qyOut � f qyIn ¼ � iωρaq
Z z ¼ d

z ¼ hq

Z θ ¼ 2π

0
ϕI;q sin θqdθqdz

þ iωρbq
Z z ¼ d

z ¼ hq

Z θ ¼ 2π

0
ϕM;q sin θqdθqdz ð5:3Þ

The first order vertical exciting force acting on the q device's
horizontal walls equals to:

f qz ¼ � iωρ
Z r ¼ aq

r ¼ bq

Z θ ¼ 2π

0
φIII;qð�1Þrqdθqdrq ð5:4Þ

The overturning moment on each device q about a horizontal
axis lying at an arbitrary distance z¼ e from the sea bed is the real
part of MUe� iωt ; where M is made up of Ms and Mb arising from
the pressure distribution on the q device's vertical walls and on its
bottom, respectively, (Mavrakos, 1985):

Mq
s;x ¼ � iωρaq

Z z ¼ d

z ¼ hq

Z θ ¼ 2π

0
ϕI;qðz�eÞ cos θqdθqdz

þ iωρbq
Z z ¼ d

z ¼ hq

Z θ ¼ 2π

0
ϕM;qðz�eÞ cos θqdθqdz ð5:5Þ

Mq
s;y ¼ � iωρaq

Z z ¼ d

z ¼ hq

Z θ ¼ 2π

0
ϕI;q z�eð Þ sin θqdθqdz

þ iωρbq

Z z ¼ d

z ¼ hq

Z θ ¼ 2π

0
ϕM;q z�eð Þ sin θqdθqdz ð5:6Þ

Mq
b ¼ � iωρ

Z r ¼ aq

r ¼ bq

Z θ ¼ 2π

0
ϕIII;qð�1Þr2qdθqdrq ð5:7Þ
6. Motion-and pressure-dependent hydrodynamic reaction
forces

The motion-dependent hydrodynamic reaction forces and
moments f qpij acting on the device q in the ith direction due to the
forced oscillation of the device p in the jth direction can be
obtained by the linearized Bernoulli's equation as:

f qpij ¼ � _ξ
p
j0iωρ∬S0ϕ

n;qp
j nq

i dS;n¼ I; III;M ð6:1Þ
The generalized normal components nq

i have been defined
through Eq. (2.8) and ϕn;qp

j are calculated depending on which part
of the device's wetted surface the integration is being carried out.
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The complex force f qpij may be written in the form (Newman,
1977a):

f qpij ¼ ð�bqpij þ iωaqpij Þ_ξ
p
j0 ¼ ðω2aqpij þ iωbqpij Þξ

p
j0 ¼ω2ðaqpij þ i=ωbqpij Þξ

p
j0

¼ω2πqp
ij ξ

p
j0 ð6:2Þ

where aqpij ;b
qp
ij ; are the well-known added mass and damping

coefficients, respectively, both real and dependent on frequency ω.
The above Eq. (6.2) can be written in a matrix form as:

f q;NR

h i
¼ κqNij
h i

U _ξ
N
j0

� �
¼ μqN

ij

h i
U ξNj0
h i

ð6:3Þ

here μqN
ij

h i
is a square matrix (6N�6N), where N defines the

number of the OWC devices of the array, containing the added
mass and damping coefficients (see Eq. (6.2)); ξNj0

h i
is a column

matrix (6N�1) containing the motions in the 6th degrees of
freedom of all the devices of the configuration.

The corresponding pressure-dependent hydrodynamic reaction
forces and moments f qpPj acting on the device q in the jth direction
due to air pressure in the device p can be obtained as in Eq. (6.1)
by:

f qpPj ¼ �ppin0iωρ∬S0ϕ
n;qp
P nq

i dS; n¼ I; III;M ð6:4Þ

where ϕn;qp
P are calculated depending on which fluid domain is

being examined.
The force f qpPj may be written in the form:

f qpPj ¼ ð�eqpPj þ idqpPj Þppin0 ð6:5Þ

where eqpPj ; d
qp
Pj ; are real and dependent on frequency ω, repre-

senting the hydrodynamic coupling between the oscillating devi-
ces and the oscillating pressure distributions.

In a matrix form, Eq. (6.5) can be written as:

f q;NP

h i
¼ CN

P

h i
U pNin0
� � ð6:6Þ

here CN
P

h i
is a (6N�N) matrix containing the eqpPj ; d

qp
Pj from Eq.

(6.5) and pNin0
� �

is a column matrix (N�1) containing the values of
the inner air pressure in each device of the array.
7. Motion and air pressure determination

The investigation of the equilibrium of the forces acting on the
freely floating array of N OWC devices leads to the following sys-
tem of differential equations of motion in the frequency domain,
(q¼1, 2, …, N), i.e.:

XN
p ¼ 1

X6
j ¼ 1

ðδp;qmq
kjþaqpkj ÞU €ξ

p

j0þbqpkj U
_ξ
p
j0þδp;qc

q
kj Uξ

p
j0þ

XN
p ¼ 1

ðeqppk� idqppkÞUp
p
in0

¼ f qkþδk;3 U f
q
MP ; k¼ 1;2:::;6 ð7:1Þ

where ξpj is the 6-degree displacement vector of the p device of the
array; mq

kj is the mass matrix of the q device; aqpkj is the frequency–
dependent hydrodynamic mass matrix and bqpkj is the frequency–
dependent damping matrix of the device q in the kth direction due
to the forced oscillation of the device p in the jth direction (see Eq.
(6.2)); cqkj is the stiffness matrix; f qk represents the exciting force on
the q device in the kth direction (see Eqs. (5.2)–(5.7)); the product
ðeqppk� idqppkÞUp

p
in0, represents the hydrodynamic reaction forces and

moments acting on the device q in the kth direction due to air
pressure in the device p (see Eq. (6.5)) and f qMP is the force on the
horizontal chamber's wall of the q device due to its inner pressure;
it is equal to:

f qMP ¼ Sqi Up
q
in0 ð7:2Þ
here Sqi is the cross-sectional area of the inner water surface
inside the q device.

Substituting Eqs. (6.5) and (7.2) into Eq. (7.1) we get:

XN
p ¼ 1

X6
j ¼ 1

�ω2 U δp;qm
q
kjþaqpkj þ

i
ω
bqpkj

� �
þδp;qc

q
kj

� �
Uξpj0

8<
:

þ � f qpPk
ppin0

�δp;qδk;3S
q
i

( )
Uppin0

)
¼ f qk; k¼ 1;2:::;6 ð7:3Þ

In a matrix form Eq. (7.3) can be written as:

μN� �
U ξNj0
h i

þ CN
h i

U pNin0
� �¼ f ND

h i
ð7:4Þ

where CN
h i

is a (6N�N) matrix containing the � f qpPk=p
p
in0�

�
δp;q

δk;3S
q
c Þ elements; μN

� �
is a square (6N�6N) matrix containing the

elements �ω2 U δp;qm
q
kjþaqpkj þ i

ωb
qp
kj

h i
þδp;qc

q
kj


 �
; f ND
h i

is a (6N�1)
vector containing the exciting forces acting on each device of the
array; the vectors ξNj0

h i
, pNin0
� �

are defined by Eqs. (6.3) and (6.6).
From Eqs. (4.5) and (4.6) we get:

λN
h i

U ξNj0
h i

þ BN
h i

U pNin0
� �¼ qND

� � ð7:5Þ

Here BN
h i

is a (N�N) square matrix; it is equal to BN
h i

¼ ΛN
h i

�
qNp
h i

, where ΛN
h i

is a (N�N) diagonal matrix containing the

δp;qΛ
q� �

elements (see Eqs. (4.5), (4.6)); λN
h i

is a (N�6N) matrix;

it is equal to: λN
h i

¼ iω qNj
h i

(see Eq. (4.5)); the vectors ξNj0
h i

, pNin0
� �

are defined by Eqs. (6.3) and (6.6) and the vector qND
� �

by Eq. (4.5).
From Eq. (7.5) it can be obtained that the air pressure inside

each OWC device is a function of the 6-degree displacement vector
of each device of the array, i.e.

pNin0
� �¼ BN

h i�1
U qND
� �� BN

h i�1
U λN
h i

U ξNj0
h i

ð7:6Þ

where BN
h i�1

is the inverse matrix of BN
h i

.
Substituting Eq. (7.6) into Eq. (7.4), the unknown motion

components of each device can be calculated, each one being
considered independently floating in the array.
8. Power absorption

The power absorbed, Pq, by each OWC device of the array, q¼1,
…,N, can be written as (Falnes and McIver, 1985):

Pq ¼ 1
2
Re qq Upqin0
n o

ð8:1Þ

Here pqin0 is the complex conjugate of pqin0. The term qq for all
the OWC devices of the array can be recast in a matrix form, see
Eq. (4.5).

The capture efficiency, also called the relative capture width
(Cruz, 2008) can be obtained by (Nader et al., 2012):

Eqf ¼
Lqpc
2bq

¼ Pq

2bqPw
ð8:2Þ

Here Lqpc is the power capture width from the q device and Pw is
the mean wave power (averaged over the wave period) per crest
width of a monochromatic plane wave of amplitude (H/2) and
frequency ω:

Pw ¼ 1
2
ρg

H
2

� 	2

Cg ð8:3Þ

where Cg is the group velocity.
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The total capture efficiency by the array of N OWC devices can
be obtained from Eq. (8.2), i.e. (Nader, 2013):

Em ¼
1
N

PN
n ¼ 1

Pn

2bqPw
¼ 1
N

XN
n ¼ 1

Enf ð8:4Þ

where Pn is the power absorbed by each OWC device of the array
and Enf is the capture efficiency from each device defined by Eq.
(8.1) and Eq. (8.2) respectively.
9. Time mean drift loads

By making use of the near-field method presented by Pinkster
and Oortmerssen, 1977, the time-mean drift force and moment,
acting on the device q of the array, can be obtained as:

F ð2Þ;q
��!

¼ �
Z
WL

1
2
ρUgU ζqr

� �2
n!dlþMURUX″qg

�!
þ∬Sq0

1
2
UρU ∇Φq

 

2 n!dSþ∬Sq0

ρU Xq�!U∇Φq
t n
!dS ð8:5Þ

Here the bars denote the time average; Sq0; is the mean q
device's wetted surface; ρ is the water density; g is the gravity
acceleration; n! is the unit normal vector pointing outwards to the

device; M is the generalized mass matrix; Xq�! is the vector of the
first-order translations at a point on the device's wetted surface,
which can be expressed as superposition of translation motions of

the bodies' center of gravity, X
!q

g , and the rotations around it. The
latter are contained in the transformation matrix R (Mavrakos and

Konispoliatis, 2012). The term X″qg
�!

; is the first-order translational
accelerations of body's center of gravity and ζqr ; is the first-order
relative wave elevation with respect to the transposed static water
line WL on the q device. In Eq. (9.1), generalized normal vector
components and mass moments of inertia have to be considered
for evaluating the mean drift moments.
10. Numerical results

The calculation of the Fourier coefficients (see Section 3) is the
most significant part of the numerical procedure, because of their
Fig. 2. Schematic representation of an ar
influence on the accuracy of solution. For the case of the I and M
ring element, i¼40 terms were used, while for the III ring element
N¼60 terms; the number of interactions between the devices of
the array were taken equal to 7 and the modes m¼77, since
it was found that the results obtained for those values were correct
to an accuracy of within 1%. The presented results were obtained
using the in house developed computer code HAMVAB
(Hydrodynamic Analysis of Multiple Vertical Axisymmetric
Bodies, Mavrakos 1995) in FORTRAN programming language.
The CPU time for each wave frequency related to the diffraction
problem is about 6 s; while for the diffraction and motion radia-
tion problem about 40 seconds and for the overall problem
solution (diffraction, motion- and pressure- radiation problem)
about 48 s.

Three different array configurations were examined. A three
OWC array with the devices placed at the vertices of an equilateral
triangle as shown in Fig. 2; and two different four-OWC arrays
with the devices placed at the tops of a square with varying wall
thicknesses (see Fig. 2). All devices in an array have the same
dimensions. For the first two configurations, dimensionless para-
meters defining the system were selected as follows: b/d¼0,2; a/
d¼0,206; (d�h)/d¼0,2; whereas for the third configuration same
as above but with a/d¼0,25. The distance between two devices in
the same row/column was L.

The investigated arrays are exposed to the action of regular
monochromatic wave train propagating along the positive x-axis.
As already mentioned in Section 4, the air compressibility in the
chamber is neglected, thus the pneumatic admittance Λq is a real
number. Its value for all the restrained OWCs was considered equal
to the optimum coefficient Λopt of the same restrained OWC device
but in isolation condition as in Evans and Porter (1996) work. As
far as the freely floating OWCs is concerned, Λq was considered
equal to the optimum coefficient Λopt of the same free floating
OWC device but in isolation condition (Nader, 2013).

Before presenting the results obtained from the numerical
model, we shall introduce the non-dimensional parameters of
interest.

The exciting wave forces and moments acting on the first
device of each OWC's array (see Fig. 2), f i;1; i¼ 1;3;5; are defined
ray of three-and four-OWC devices.
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as:

f 1;1; f 3;1; f 5;1
� �¼ f 1x

ρga2ðH=2Þ;
f 1z

ρga2ðH=2Þ;
M1

y

ρga3ðH=2Þ

 !
ð10:1Þ

The modulus of the diffraction volume flow qqD in the first
device of each configuration is made non-dimensional as:

ΓD ¼ gqD


 



ωSiðH=2Þ
; f or q¼ 1 ð10:2Þ

The radiation conductance and the radiation susceptance in the
first device of the array due to unit time harmonic oscillating
pressure head inside the p-th device of each configuration
(p¼1,2,3 for triangle and p¼1,2,3,4 for rectangular arrangement)
have been made non-dimensional as:

A1p;B1p
� �¼ g1pp

b=ðρωÞ;
f 1pp

b=ðρωÞ

 !
ð10:3Þ

where gqpp ; f qpp are given by Eq. (4.3).
The total volume flow qq; for the first device of each config-

uration has been presented as:

Pq ¼ qq

ωSiðH=2Þ
; f or q¼ 1 ð10:4Þ

Here qq is given in Eq. (4.2).
The total mean efficiency Em; is obtained accordingly by:

Em ¼ 1
N

XN
n ¼ 1

Ef ;n ð10:5Þ

where Ef ;n is the coefficient as calculated in Eq. (8.4).
The non-dimensional horizontal- and vertical-displacements

and the pitch rotation of the first device, ðx1; x3; x5Þ; in each array
are defined by:

ðx1; x3; x5Þ ¼
ξq10
H=2

;
ξq30
H=2

;
ξq50

kUH=2

 !
; f or q¼ 1 ð10:6Þ

here ðξq10; ξq30;ξq50Þ are the motion components of the first
device of the array when it is floating independently, as solution of
Eqs. (7.5) and (7.4).

The horizontal mean second-order wave drift force, f ð2Þ, acting
on the first device of each OWC array has been made non-
dimensional as:

f ð2Þ ¼ Fð2Þ;qi

ρgaðH=2Þ2
; q¼ 1 and i¼ x; y ð10:7Þ

where F ð2Þ;qi is evaluated by Eq. (9.1).
In Tables 1 and 2 the module of the exciting forces as defined

by Eq. (10.1) are presented versus kd for the first OWC device of
the first two configurations (see Fig. 2) for various distances
between the devices over a frequency range of 1rkdr6. It can be
Table 1
Modulus of the exciting wave forces and moments on the first OWC device of the first c
device in isolation.

kd L¼ 2aþb L¼ 2aþ2b L¼ 2aþ5

f 1;1 f 3;1 f 5;1 f 1;1 f 3;1 f 5;1 f 1;1

1.214 0.776 0.153 0.301 0.806 0.153 0.313 0.833
1.942 1.196 0.140 0.456 1.265 0.134 0.482 1.365
2.184 1.356 0.136 0.514 1.445 0.127 0.547 1.511
2.913 1.806 0.128 0.673 1.732 0.142 0,643 1.900
3.155 1.420 0.189 0.526 1.467 0.208 0.541 2.397
3.883 2.193 0.016 0.790 4.061 0.004 1.471 1.882
4.126 4.071 0.011 1.460 2.946 0.005 1.060 2.583
4.854 4.043 0.008 1.424 1.967 0.024 0.694 2.714
5.097 3.324 0.016 1.163 1.687 0.027 0.592 2.416
seen that for both configurations (three-and four-array arrange-
ments) and for various distances between the OWCs, the vertical
exciting force acting on the first OWC device has a peculiar
behavior near kd¼ 3,155, same as for the single isolated device. In
the vicinity of kd¼ 3,155a resonance of the confined fluid inside
the circular area of the device's chamber occurs. This peculiar
behavior is typical for structures with moon pools. The funda-
mental hydrodynamic properties of such structures have been
investigated some time ago (Garrett, 1970; Newman, 1977b).
When a structure of this type is held fixed in incident mono-
chromatic waves, the amplitude of the fluid motion will have local
maxima at certain frequencies of the forcing. At these resonance
frequencies, the magnitude of the exciting wave forces display also
local maxima (see Tables 1 and 2). It should be mentioned that
these resonances are annulled when the body is free to move
(McIver, 2005).

Furthermore, as it can be seen from Tables 1 and 2, the
hydrodynamic interactions between the OWCs affect the values of
the exciting forces and moments, in dependence from the spacing
between the devices. More specifically, the horizontal exciting
forces and moments for the first device of both configurations
attain a maximum value for spacing equals to L¼ 2aþb. On the
other hand, the maximum value of the vertical exciting force at the
second arrangement is reached for L¼ 2aþ5b while for the first
configuration for spacing L¼ 2aþb; 2aþ2b.

In Figs 3 and 4 the modulus of the diffraction air volume flow as
defined by Eq. (10.2) is given for the first OWC device in the first
and second configuration, respectively, plotted versus kd for var-
ious distances among the devices. It is depicted that the dimen-
sionless air volume flow of the diffraction problem in the first
device of the first configuration remains unaffected by the spacing
between the devices. The incoming wave firstly interacts with the
first device and then with the remaining OWCs. On the other hand,
in the second configuration the incoming wave firstly interacts
with both first and second OWCs (see Fig. 2) and then with the
remaining OWCs leading to different values of diffraction air
volume flow especially in the neighborhood of their maximum
attainable value which is reached for L¼ 2aþ5b.

In Fig. 5, the modulus of the diffraction air volume flow inside
the first OWC device in the third configuration is plotted versus kd.
Here, the dimensionless diffraction air volume flow is compared
very well with Nader et al. (2014) results, who used a 3D finite
element model in order to solve the diffraction and pressure
radiation problem for an array of fixed OWCs.

In Figs. 6–13 the radiation conductance and the susceptance as
defined by Eq. (10.3) are given for the first OWC device in the first
and second configuration, respectively, plotted versus kd for var-
ious distances between the devices, whereas in Figs. 14–16 the
radiation conductance and susceptance for the same OWC device
as above for the third configuration is shown. In Figs. 6 and 9 the
onfiguration for various kd compared to the corresponding ones of the single OWC

b L¼ 2aþ10b Isolated OWC

f 3;1 f 5;1 f 1;1 f 3;1 f 5;1 f 1 f 3 f 5

0.149 0.323 0.852 0.145 0.330 0.83 0.14 0.32
0.121 0.519 1.258 0.133 0.479 1.30 0.13 0.49
0.118 0.572 1.439 0.126 0.544 1.44 0.12 0.54
0.135 0.706 1.853 0.139 0.688 1.82 0.14 0.67
0.121 0.885 2.176 0.139 0.803 1.91 0.16 0.71
0.013 0.682 2.773 0.009 1.005 2.11 0.01 0.76
0.006 0.930 2.927 0.004 1.054 2.14 0.01 0.77
0.015 0.959 1.526 0.026 0.539 2.15 0.02 0.76
0.019 0.847 2.100 0.023 0.737 2.13 0.02 0.74



Table 2
Modulus of the exciting wave forces and moments on the first OWC device of the second configuration for various kd compared to the corresponding ones of the single OWC
device in isolation.

kd L¼ 2aþb L¼ 2aþ2b L¼ 2aþ5b L¼ 2aþ10b Isolated OWC

f 1;1 f 3;1 f 5;1 f 1;1 f 3;1 f 5;1 f 1;1 f 3;1 f 5;1 f 1;1 f 3;1 f 5;1 f 1 f 3 f 5

1.214 0.817 0.153 0.317 0.827 0.152 0.320 0.844 0.148 0.327 0.844 0.146 0.327 0.83 0.14 0.32
1.942 1.292 0.137 0.492 1.330 0.130 0.506 1.340 0.123 0.510 1.293 0.128 0.492 1.30 0.13 0.49
2.184 1.480 0.131 0.560 1.520 0.121 0.575 1.446 0.123 0.547 1.478 0.123 0.559 1.44 0.12 0.54
2.913 1.820 0.124 0.677 1.768 0.129 0.657 1.802 0.144 0.669 1.828 0.140 0.679 1.82 0.14 0.67
3.155 1.518 0.156 0.560 1.865 0.146 0.688 1.752 0.221 0.647 1.923 0.145 0.710 1.91 0.16 0.71
3.883 3.094 0.011 1.118 2.410 0.013 0.873 2.558 0.007 0.927 2.486 0.010 0.901 2.11 0.01 0.76
4.126 3.585 0.002 1.288 2.274 0.009 0.819 2.572 0.005 0.926 2.343 0.006 0.844 2.14 0.01 0.77
4.854 2.498 0.025 0.881 1.432 0.028 0.505 2.057 0.018 0.727 2.241 0.018 0.791 2.15 0.02 0.76
5.097 2.466 0.025 0.864 1.365 0.027 0.479 1.963 0.020 0.689 2.654 0.013 0.931 2.13 0.02 0.74
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Fig. 4. Modulus of the diffraction volume flow, ΓD , in the first OWC of the second
configuration versus kd.
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Fig. 5. Modulus of the diffraction volume flow, ΓD , in the first OWC of the third
configuration versus kd compared with Nader et al. (2014) results.

Fig. 6. Radiation conductance and susceptance A1;1;B1;1
� �

for the first OWC device
of the first configuration versus kd compared to the corresponding ones of the
single OWC device in isolation.
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Fig. 7. Radiation conductance A1;2 for the first OWC device of the first configuration
versus kd.
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Fig. 3. Modulus of the diffraction volume flow, ΓD , in the first OWC of the first
configuration versus kd.
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radiation conductance and susceptance for the first device of both
configurations due to its own pressure head are fairly similar
compared to those for the isolated OWC. Moreover, same as in the
discussion of Fig. 3, in the triangular OWC arrangement the
radiation conductance and susceptance values remain unaffected
by the spacing between the devices contrary to those obtained in
the rectangular configuration in which they attain different values
especially for 3rkdr4.

In addition, from Figs 7,8 and 10–13 it is observed that the
radiation conductances A12;A14 and susceptances B12;B14 in the
first device due to pressure variation in the second and the forth
device of the arrangement, respectively, exhibit non-negligible
values, and hence, the radiated wave induced by the inner pres-
sure of the rest of the OWCs in the array seems to have significant
importance in the solution of the hydrodynamic problem. As
expected, due to symmetry reasons, the radiation conductance
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Fig. 8. Radiation susceptance B1;2 for the first OWC device of the first configuration
versus kd.

Fig. 9. Radiation conductance and susceptance A1;1;B1;1
� �

for the first OWC device
of the second configuration versus kd compared to the corresponding ones of the
single OWC device in isolation.
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Fig. 10. Radiation conductance A1;2 for the first OWC device of the second config-
uration versus kd.
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Fig. 11. Radiation susceptance B1;2 for the first OWC device of the second config-
uration versus kd.
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Fig. 12. Radiation conductance A1;4 for the first OWC device of the second con-
figuration versus kd.
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Fig. 13. Radiation susceptance B1;4 for the first OWC device of the second config-
uration versus kd.
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and susceptance for the first OWC due to air pressure inside the
second device (see Fig. 2) equal to those for the first OWC due to
air pressure inside the third OWC, i.e. A12 ¼ A13 and A13 ¼ B13: In
Figs. 14–16 the radiation conductance and susceptance for the first
device in the third configuration is plotted against Nader et al.
(2014) results. Comparing the results from the above Figs. 6–16 it
becomes evident that the radiated waves from each device of the
array are dependent on the relative position of the OWCs in the
array and on the geometrical characteristics (i.e. thickness of the
oscillating chamber) of each OWC.

In order to justify the number of interactions (i.e. 7) used in the
solution process, the values of: N_A12 ¼ ðAi

12�A1
12Þ=A1

12,
N_B12 ¼ ðBi

12�B1
12Þ=B1

12N_A14 ¼ ðAi
14�A1

14Þ=A1
14 and N_B14 ¼ ðBi

14�
B1
14Þ=B1

14 are presented in Fig. 17–20 plotted against kd for
progressive increase of the number of interactions considered.
Here Ai

12, Ai
12 and Bi

12,B
i
12 as defined by Eq. (10.3) denote the

radiation conductance and susceptance, respectively, for the i-th
interaction order, of the third configuration (i¼1,..,7), whereas A1

12,
A1
12,B

1
12,B

1
12 denote the radiation conductance and susceptance,

respectively, for the first order of interaction between the devices.
It becomes clear that outside the neighborhood of the radiation
conductance and susceptance maximum attainable value (i.e.
kd¼1,2) a couple of interactions are enough to describe accurately
the multiple scattering formulation. On the other hand in the
neighborhood of their maximum attainable value (i.e. kd¼2,4,
kd¼4), seven (7) interaction orders seem to be the lower limit in
order to receive accurate results.

In Figs. 21 and 22 the modulus of the non–dimensional total
volume flow P1; as defined by Eq. (10.4), is plotted versus kd in the
first device of the first and second array configurations for
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different spacing between the devices, the latter being considered
restrained in the incident wave train. In Figs. 23 and 24 the
modulus of the non-dimensional total volume flow P1; versus kd in
the first device of the first and third array configurations are
presented when the devices are freely floating. The mass moment
of inertia with respect to the center of gravity of each OWC device
is derived from

I ¼ ρw∇ bqþ
aq�bq

2

� 	2

ð10:8Þ

Here ∇ denotes the volume of each OWC device, ρw the water
density and aq; bq(q¼1,..,N) the outer and inner radii of each device
as defined above.

From Figs. 21 and 22 it is depicted that as the spacing between
the OWC devices is increasing the total volume flow in the first
device tends to the one corresponding to an OWC in isolation
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Fig. 15. Radiation conductance and susceptance A1;2 ;B1;2
� �

for the first OWC device
of the third configuration versus kd compared with Nader et al. (2014) results.
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Fig. 16. Radiation conductance and susceptance A1;4 ;B1;4
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for the first OWC device
of the third configuration versus kd compared with Nader et al. (2014) results.
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Fig. 14. Radiation conductance and susceptance A1;1 ;B1;1
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for the first OWC device
of the third configuration versus kd compared with Nader et al. (2014) results.
condition since the interaction phenomena between the devices
decrease significantly. In addition, as far as the rectangular
arrangement is concerned, it can be seen that the total air volume
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Fig. 17. Graphics for N_A1;2 versus N interactions.
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uration for restrained OWC devices versus kd compared with the total volume flow
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flows show significant variations compared to the corresponding
ones of the triangular configuration, especially near their max-
imum attainable values for varying spacing.

Next, form Fig. 23 it is evident that the total air volume flow for
the free floating devices is lower than the one corresponding to
the restrained devices (Fig. 21) except near kd¼ 4;8. The same
evidence was found when the inner air pressure head in a single
isolated restrained device was compared to its freely floating
counterpart (Mavrakos and Konispoliatis, 2012). In Fig. 24 the total
volume flow inside the first device of the array is compared to the
one of a single free floating OWC device with same geometrical
characteristics as the ones investigated by Nader (2013). The fre-
quencies kd¼ 4;8 (see Fig. 23) and kd¼ 4;5(see Fig. 24) where the
peak values of the air volume flow are obtained, correspond to the
natural resonance frequencies of the heave motion of the device
for each configuration.

The total mean efficiency Em; as defined by Eq. (10.5), in the
first two arrangements for varying spacing between their OWC's
devices is presented in Figs. 25–28 for a frequency range of
1rkdr6. More specifically, in Figs. 25 and 27 the mean efficiency
of the OWCs in the first configuration is given, when the devices
are considered either restrained in incident regular waves (Fig. 25)
or freely floating (Fig. 27). In Fig. 26 the results of the present
method are compared with the ones of Nader et al. (2012), when
the devices are considered restrained in regular waves. In Fig. 28
the mean efficiency for the free independently floating array of
four OWCs (second configuration) is being plotted.

The overall maximum mean efficiency for both three and four
restrained OWC's arrays configurations is attained near kd¼3,4 for
spacing equal to L¼ 2aþ5b. This peak efficiency for the restrained
four OWC's array configuration is up to 20% higher than the peak
efficiency attained by the same restrained OWC in isolation con-
dition, while for the restrained three OWCs is up to 3% higher for
restrained isolated OWC. On the other hand, for both three and
four free floating OWC's arrays configurations two different peak
values are presented. Firstly, near kd¼3,4 where as mentioned
above the overall maximum mean efficiency is for spacing equal to
L¼ 2aþ5b and secondly, at the resonance frequency of the heav-
ing motion of the device where L¼ 2aþ5b has the worst perfor-
mance of all spacing values.

From the above depicted results it is observed that an increase
of the wave interaction effects (for example by lowering the spa-
cing among the devices) does not necessarily leads to an increase
of the absorbed energy by the devices. Babarit et al. (2010) arrived
to the same conclusion examining an array of two WEC devices in
regular and irregular wave impact. Following the remarks by
Nader et al. (2012), the arrays of OWC devices can be divided into
three broad categories, depending from the non-dimensional ratio
of the wavelength to the inter-body spacing in the array. The first
category is where the distance between the devices is lower than
the wavelength. In this case the arrangement behaves as a larger,
single OWC device. The second category is when the spacing
between the devices has a very large value compared with λ. In
this case the interaction phenomena between the devices decrease
significantly and each device tends to behave as an OWC in iso-
lation condition. The third category is when the value of the
spacing between the OWCs tends to λ. In the present case of the
three- and four-device configurations, the distance L¼ 2aþ5b
belongs to this category, as the wave length approximates to 1,85d
and the distance L¼1,412d for the particular geometry. Thus, the
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selection of the array spacing can significantly enhance the total
power output.

In Figs. 29–31 the non–dimensional translational and rotational
motions, as defined by Eq. (10.6), of the first OWC device in the
first two arrangements (see Fig. 2), are plotted for various spacing
and for a frequency range of 1rkdr6. It can be noticed that the
horizontal surge motions (Fig. 29) and the pitch rotations (Fig. 31)
in both arrangements differ a lot from the ones obtained from the
same OWC device in isolation. These differences can be traced
back to the hydrodynamic interaction phenomena among the
devices and the oscillating air pressure head inside each device of
the array, since for the isolated device there are no hydrodynamic
interactions and the inner air pressure do not affect the horizontal
motion and rotation (Mavrakos and Konispoliatis, 2012). As far as
the heave motion (Fig. 30) of the first OWC is concerned, its
maximum value is attained for kd¼3,4 and 4,8, i.e. at the same kd
values as the mean efficiency (Figs. 27 and 28). For kd¼3,4 the
vertical displacement of the OWC for both the three- and four-
array configurations reaches a maximum value for spacing
L¼ 2aþ5b. At kd¼4,8 the heave resonances of the floating OWC's
occur for all the inter-body spacing. For the frequencies outside
the neighborhood of kd¼3,4 and kd¼4,8 the different arrays lay-
outs (triangle or rectangular) seem to have little effect on the
vertical displacement of the first OWC for all the examined spa-
cing. Moreover, as far as the resonances of the water motion
occurred inside the restrained OWC's with the internal moon pool
and the associated peaks of the heave exciting forces on the
devices (see results included in Tables 1 and 2) when they are
exposed to the action of surface regular waves are annulled when
the devices are freely floating (McIver, 2005; Mavrakos and Kat-
saounis, 2010). Hence, even in their neighborhood of occurrence,
they do not affect the motion of the free floating device, which is
therefore dominated by any nearby motion resonance due to
hydrostatic restoring force. In Fig. 30 the aforementioned annul-
ment becomes evident as at its expected location of occurrence,
that is, near kd¼ 3,155 no peak in the heave response occurs. The
kinematic behavior of the floating device is dominated by the
existing motion resonance, which occurred near kd¼ 4;8.

In Figs. 32 and 33 the horizontal drift forces acting on the first
device in the first two configurations (see Fig. 2) along the x-axis
are plotted for various spacing and for a frequency range of 1rk
dr6 (for definitions see Eq. (10.7)). The OWCs in Fig. 32 are
considered restrained in incident regular waves while in Fig. 33
the devices are considered free floating. It can be noticed that the
horizontal drift forces differ a lot between the two arrangements.
These variations occur due to the number of OWCs which compose
each arrangement and the hydrodynamic interaction phenomena
among them. In Figs. 34 and 35 the horizontal drift forces acting
on the same as above OWC device for the second configuration
along the y-axis are presented. As it was expected the horizontal
drift forces on the first OWC along the y-axis for the first config-
uration equals to zero.
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11. Conclusion

An analytical method has been developed to solve the diffrac-
tion, the motion– and pressure-dependent radiation problems
around an array of vertical axisymmetric OWC devices. This
method provides an efficient tool for complete hydrodynamic
analysis of these devices, including the evaluation of the first- and
mean-second order wave forces, the pressure hydrodynamic
parameters and the power efficiency.
The depicted results indicate that the radiated waves from each
OWC device are affected by the distance between the devices in an
array. Major improvements have been demonstrated for an array
spacing of L¼ 2aþ5b either restrained or free floating. Moreover,
the coupling between the number of the OWCs in the array and
their placement against the wave front may affect significantly the
power capture efficiency. Finally, the presented results demon-
strate that the interaction phenomena between the OWCs exhibit
non-negligible effect on the mean second order forces. The
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importance of these load components is high since they may cause
large body excursions from its mean position when the restoring
forces are weak, although generally small in magnitude compared
with their first–order oscillatory parts.

It could be interesting to study in further works how the power
efficiency is influenced when the OWC devices are connected together
forming an integrated floating platform. It might also be relevant to
analyse different wave angles of the incident regular or irregular waves.
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Appendix A

The total velocity potential, obtained from the solution of the
pressure-radiation problem, for the III fluid domain (bqrrq
raq,0rzrhq) can be written as:

ϕIII;qp
P ðrq; θq; zÞ ¼ � i
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where:
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and εn is the Neumann's symbol defined as: ε0 ¼ 1; for n¼0;
otherwise εn ¼ 2.

For the M fluid domain (0rrqrbq,0rzrd), the total velocity
potential can be written as:
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where gM;p
P;0 ¼ 1

The orthonormal functions ZjðzÞ are defined by Eqs. (2.11),
(2.17).
Appendix B

The defining equations for Ln;i are Eqs. (3.5), (3.6), (3.7) and
(3.8) where:

for iZ1; aianπ=hq, then:
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for i¼ 0; then:

Ln;i ¼
1
hq

Z hq

0
Z0ðzÞ cos

nπz
hq

� 	
dz¼ ð�1Þn 1

2
1þsinhð2kdÞ

2kd

� �� ��1=2 khq
k2h2

qþn2π2
sinhðkhqÞ

ðB2Þ
for iZ1; ai ¼ nπ=hqa0, then:

Ln;i ¼
1
hq

Z hq

0
ZiðzÞ cos

nπz
hq

� 	
dz¼ 1

2
1
2

1þ sin ð2aidÞ
2aid

� �� ��1=2

ðB3Þ

Value of Q�
p;0;n:

Q�
p;0;n ¼

1
hq

Z hq

0
cos

nπz
hq

� 	
dz¼

0; na0
1; n¼ 0

(
ðB4Þ
The defining equations for AM
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Here RIII
mn,R

�III
mn are defined in the Appendix A (Eq. (A2)) and GI;qp

p;m;i
is defined by Eqs. (2.35)–(2.37).
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